University of Hamburg

Department of Informatics

Bachelor Thesis

Typosquatting in Programming Language Package
Managers

presented by

Nikolai Philipp Tschacher
born on May 1, 1991 in Tiibingen
Matriculation Number 6632193

BSc Information Systems

submitted on March 17, 2016

Supervisor: Dr. Dominik Herrmann
First Reviewer: Prof. Dr.-Ing. Hannes Federrath

Second Reviewer: Dr. Dominik Herrmann

Obijective

During the rise of the web 2.0, high level programming languages like Ruby, Node.js (Javascript),
Python, Perl and PHP gained a lot of popularity which ultimately let to more libraries being
hosted in centralized package managers. As it is known from typosquatting (Also: cybersquat-
ting, domain squatting), the popularity of big websites may be misused by third parties by
registering domain names that resemble their target domains, but contain some intentional typos.
The same principle may be applied to package managers: If a user intends to install a popular
software and mistypes/misspells the package name, a malicious squatted package is downloaded
instead, which can lead to code execution (potentially with administrative privileges).

This work tries to show that the same methodology of domain squatting can be applied to
package mangers. The main goal of the work is to estimate the risk of such attacks. Furthermore,
this thesis tries to develop simple and effective countermeasures that package managers could
employ.

In the empirical part of the thesis, semi-automatic and transparent uploads of typo-squatted
packages to several registries are tried out in order to measure the severity of such an attack by
counting the number of successful installations. It is expected that this form of squatting can
be used to install malware an other computer systems. The number of successful installations
is anticipated to correlate with the popularity and the propensity to misspell a certain package
name.

The empirical part is to be followed by an analytical part. The analytical part generates ideas
for countermeasures that allow repository maintainers or users to detect typosquatting attacks
in the future. For this purpose potential typosquatting candidates could be generated for each
legitimate package name with the help of the Levenshtein distance algorithms or Bayesian
networks. Another option that can be considered is the Metaphone algorithm.

Abstract

In an empirical study, the concept of typosquatting was applied to programming language
package managers such as Pythons central package repository (PyPi). Domain typosquatting is
the act of purposefully registering hostnames which are similar to other, often popular, target
hostnames. The reason for such malicious acts is to redirect traffic to a third party site that can
then exploit the user’s unintentional misspelling by showing advertisements or infecting the user
with malware.

In some cases, the installation of third party programming language packages allows the package
author to execute code on the installing user’s system. A typosquatting attack simulation on the
package repositories pypi.python.org (Python), rubygems.org (Ruby) and npmjs.com (Node.js)
by finding and uploading package names that are similar to famous existing packages, or by
creating typos algorithmically, was conducted. Then information was collected of each single
host that installed such a typo package.

The results of the attack showed that over 17 thousand distinct hosts installed those typo packages
and executed their code. All these computers could have been infected with malware if malicious
agents would have been the attackers instead. Around 50 percent of these confirmed installations
were conducted with administrative rights, which increases the security impact considerably.
A main result of the thesis is, that very few package names account for a large part of all
installations. Furthermore, the meta data which the typo packages sent to the previously setup
web server, was analyzed.

In the theoretical part of the thesis, existing research on DNS typosquatting was applied on
programming language typosquatting. Several ways to generate typo candidates (Levenshtein
distance and related algorithms) were presented.

Finally, this thesis presents various ideas on how to effectively protect users from the dangers of
programming language typosquatting in an analytical part. It is hoped that package repositories
will notice this work and consider using some of the presented defense techniques.

The target audience of the obtained results is the cybersecurity community and everybody
involved in programming language package management administration and design.

Acknowledgements

I want to thank Dr. Dominik Herrmann, my supervisor, for his time and helpful ideas during
many meetings in these five months of writing this thesis. Many thanks go to Dr. Dominik
Herrmann and Prof. Dr. Hannes Federrath for agreeing on my proposal to prove successful
installations with HTTP requests to a university web server. I want to thank my father, Prof. Dr.
Wolfgang Tschacher, for helping me with many suggestions on how to improve the language
and presentation of this work. My acknowledgments belong to Donald Stufft, one of the
PyPi administrators, who was very cooperative and allowed me to continue the typosquatting
experiment. I want to thank Michal Jaworski for sending me helpful suggestions and ideas about
the distributed notification program. Furthermore, I am grateful for Robert Kerns warning to
assign descriptions to all typo packages to clarify the intentions of the empirical experiment.

Contents

1

Introduction

1.1
1.2
1.3

Background and General Idea,
Thesis Structure
Terminology

Theoretical Background of Typosquatting

2.1 Differences to Domain Name System Typosquatting
2.2 PreviousResearch.
2.3 Edit Distance Algorithms
2.3.1 HammingDistance
2.3.2 LevenshteinDistance
2.3.3 Damerau-Levenshtein Distance
2.3.4 Longest Common Substring Distance
235 Q-GramDistance e
2.3.6 Metaphone Algorithm
Methods
3.1 Targeted Programming Languages
3.2 Prerequisites for Typosquatting Attacks
3.3 Rejected Programming Languages
3.4 Generation of Typosquatting Targets
3.5 Collected Information L
Results
41 SummaryofResults.
4.2 Distribution of Installations per Package
4.2.1 Creative TypoNames
4.2.2 Stdlib Typos and Core Packages
4.2.3 Algorithmically Determined Typo Names
424 Implications e
4.3 Creating Typo Names Algorithmically
4.4 Verification of Installation Count
4.5 Anomalies in Measuring Installations
4.6 Operating System Distribution,
4.7 Installations Over Time v
48 IPAddress Analysis. L
48.1 IPGeolocation
482 ReverseLookup
4.9 Properties of Successfully Attacked Hosts
49.1 Analysis of Command History
4.10 Reactions After Infectiono oo

4.10.1 Post Infection VisitationRate

13
14
14
15
16
18

4.10.2 Counter Attacks Upon Installation
4.10.3 Repeated Downloads of the Same Typo Package
4.104 DirectMailContact.
4.10.5 PublicReactions

5 Practical Implications

5.1 Basic AttackerModelo
5.2 Prohibit Core Package Names
5.3 Disallow Famous (Software) Names
5.4 Reduce the Character Set in Package Names
5.5 Introduce Additional Namespaces Into Package Names
5.6 Prevent Direct Code Execution on Installations
5.7 Generate a List of Potential Typo Candidates
5.8 Use Concepts of Established Package Managers
5.8.1 Debian
5.82 ArchLinux
5.9 Defense Mechanisms in Existing Package Repositories
59.1 Node—Npmjs.com
5.9.2 Python—-Pypi.python.org
5.9.3 Ruby-—Rubygems.org
5.9.4 PHP - Packagistorg
595 \NET-Nuget.com ie.no..
5.9.6 Javascript—Bowerdo
5.10 Defenses Based on User Installation Behavior
5.11 Case Study: Defending the Python Package Repository

Discussion

6.1 Validityof Results
6.2 Severity of Attack Impact L
6.3 Observing Typosquattinginthe Wild
6.4 Ethical Concerns e
6.5 Future Work L
6.6 Conclusion L

Appendix

7.1 Notification Programin Python
7.2 Data for Algorithmically Generated Typos
7.3 Finding Existing Typo Packages
7.4 Database Layout
7.5 Contents of the Storage Medium

Bibliography

42
42
43
43
43
43
44
44
44
45
45
45
46
46
47
47
47
47
47
49

51
51
51
53
54
55
55

56
56
59
63
64
65

66

1 Introduction

1.1 Background and General Idea

Domain Name System (DNS) typosquatting exploits the fact that humans misspell names when
typing them in the address bar of web browsers. However, misspellings can have much worse
consequences than arriving on a wrong website. At worst, the website tries to exploit the
user’s browser with malware, which is not a simple task considering the protective mechanisms
in modern browsers and the necessary, extremely complex attack methodologies (buffer and
integer overflows, format string vulnerabilities, other low level memory corruption exploits in a
sand-boxed environment).

In January 2015, the thesis author wondered whether this idea of abusing typos can be transfered
to other areas than the DNS. By using the programming language Python for several years, it was
learned that the third-party package manager pip (a command line application) is used to install
software libraries from Python’s community repository named PyPi. So the natural question
that the thesis author asked himself was: How many users do commit typos when issuing an
installation command in the terminal by using pip? Because everybody can upload any package
on PyPi, it is possible to create packages which are typo versions of popular packages that
are prone to be mistyped. And if somebody unintentionally installs such a package, the next
question comes intuitively: Is it possible to run arbitrary code and take over the computer during
the installation process of a package?

A pretest to the empirical study of this thesis was launched back in January 2015 by uploading
some typosquatted packages on PyPi. Those packages were named such that they resembled
well known and much downloaded package names. For instance, a package named request
instead of the famous and often downloaded package requests, was created. In those fake
packages, a short program was included which sent some data to a remote web server, that had
been setup previously. This program (called notification program in the remainder of this thesis)
notified the server whenever a user downloaded and executed the typo package and would thus
record that somebody out there had installed one of these typo packages. The data transmitted
included the information which is depicted in a Python dictionary in Figure 1.1.

Figure 1.1: Data that was collected in the pretest to this thesis in January 2015. Sending the
environment variables was not necessary and can be considered hostile.

1 data = {

2 "ip’: installed_package, # name of the typo package

3 "ia’: installed_at, # timestamp of the installation

4 "ho’ : host_os, # name of the operating system and architecture

5 "ar’: admin_rights, # if the code was run with administrative rights
6 "env'’: environ, # the shell/cmd environment variables

7 "ii’: ipinfo # IP address information of the host

8| }

Over the course of a few days, more than 50 people actually unintentionally downloaded those
typo packages and thus executed the code of the notification program. This confirmed the
previously stated assumptions: People frequently commit typos. Arbitrary code will be executed
seconds after pressing enter on a mistyped install command.

The reaction of security researchers however was very quick: Within a few days, people would
post threads in Internet forums about the malicious packages [red15; Mat15b] (The distributed
packages did not cause any harm — Yet the sending of the above listed information can be
considered hostile).

With this idea of typosquatting package repositories and the proof of concept, the present
bachelor thesis was born. By expanding on the pretest, this thesis replicates the early experiment
in a more systematic and broader study. It is tested whether other package repositories than
Python are exploitable as well. The hypothesis is the following: It is assumed that people
commit misspellings when they install packages with the package manager client in their
favorite programming language. It is additionally expected that these typos can be exploited to
such a degree, that it is possible to infect thousands of computers. Existing typosquatting can be
observed in programming language repositories (Compare to section Observing Typosquatting
in the Wild on page 53).

Starting from November 2015 until January 2015, 214 packages for the package repositories of
the programming languages Python, Node.js and Ruby were distributed. 166 of these package
names were created algorithmically with edit distance algorithms which covered all possible
typos of two chosen names. The rest of these package names were chosen according to (assumed)
human propensity of misspelling package names.

The main objective of this thesis is twofold. First, it is tried to prove empirically that there is a
huge security gap in most recent programming language package managers (on the server and
client side). Second, defensive actions are suggested which effectively protect the community
against typosquatting attacks.

To the knowledge of the author, there is no prior published research about typosquatting
in programming language package repositories. However, great effort in researching DNS
typosquatting has been made. Those insights can be applied on this very specific research niche:
Programming language package repositories.

1.2 Thesis Structure

The remainder of this thesis proceeds in the following way: In the second section, previous
research in DNS typosquatting is explored. It is hoped that lessons learned in DNS typosquatting
can leverage the fight against typosquatting in package managers, since many of the underlying
concepts are closely related. In the second part of the theoretical section, the thesis introduces
the reader to various edit distance algorithms which are used in a later part of the thesis to detect
and generate typo packages.

Then in the following chapter, the experimental design of the empirical phase is explained. After
having discussed the architecture and methodology of the experiment, results of the empirical
phase are presented in the fourth section. Then the practical implications of the findings are
elaborated in the next section (mostly defensive actions). Afterwards the thesis finalizes with a

discussion of the results in which the impact of the findings is analyzed and the validity of the
approach is discussed.

1.3 Terminology

In the following thesis, often specific concepts and terms are used which are not intuitively
understandable. Therefore, the definitions of some of the most used concepts follows. These
definitions can only be understood when progressing to later chapters of the thesis.

Package manager (client): Software which downloads, extracts and installs third party
libraries which were uploaded by programmers. The package manager client is normally
used in a terminal. In this thesis, programming language package managers often means
both, the client side and the server side (package repository). When only the server side
1s meant, the term package repository is chosen. Examples for package manager clients:

pip, npm, gem.

Package repository (server): Server software which hosts third-party packages for a spe-
cific programming language. Examples: pypi.python.org (PyPi), npmjs.com, rubygems.org.

Notification program: Software written in the same programming language as the tar-
geted package manager which is executed upon mistyping and downloading a typo
package. This program collects some host specific but not personalized data and sends it
to a web server hosted in the university network.

Unique installations: An installation of a typosquatted package can be confirmed when
a HTTP GET request with the payload data in the parameters is received. Often such
installation requests occur more than one single time. Therefore, to count each successful
installation only once, requests are considered unique only, if the IP address and the data
in the parameters are distinct. For example, a user with a static IP address, who downloads
first a PyPi package and then a week later a rubygems package, would be counted as
having issued two unique requests.

Typo victims: Everyone who installed one of the distributed typo packages. Identified by
the IP address and the timestamp of the installation.

DNS typosquatting: The act of intentionally registering a domain name to profit from
traffic of users misspelling domain names. Also known as typosquatting or domain
squatting or cyber squatting.

Interactions: The number of unique (/P address, administrative rights, host operating
systems) tuples from the installation database. There are more interactions than distinct IP
addresses, because a single user (one IP address) may install packages with alternating
administrative rights or different operating system versions.

Infection: The process of downloading a typo package and executing the notification
program. The term infection was chosen to emphasize that a malicious attack could have
happened instead.

2 Theoretical Background of Typosquatting

2.1 Differences to Domain Name System Typosquatting

Although the simple idea behind typosquatting seems to be well known in the scientific commu-
nity, no academic research efforts have been made to investigate typosquatting in other areas
than the domain name system (DNS). There are virtually no prior empirical experiments in
typosquatting programming language package managers, that the thesis author is aware of. This
however does not mean, that package repository administrators are not aware of the dangers of
typosquatting [Ball5]. The insights gained by academic DNS typosquatting research were of
paramount importance for problems encountered during this thesis. Therefore, an overview to
the state of the art research in typosquatting is given.

It must be understood that most existing research about DNS typosquatting is divided in two parts:
Finding typosquatting domains and analyzing those domains with automatic crawlers. Often
papers also propose defensive mechanisms against typosquatting. The focus in previous research
was mostly on techniques involved in locating typosquatting domains. The analytical part of
those papers is substantially different from the one of this thesis, because DNS typosquatting
deals with advertisements (and not so much with malware [SKCS14]), whereas the consequences
of typosquatting in programming languages often lead to malware being installed on computers,
as this thesis will show in its subsequent chapters.

2.2 Previous Research

Moore and Edelman make use of the Damerau-Levenshtein (DL) distance and a self defined
fat-finger distance to identify potential typosquatting websites in their work [ME10]. They define
the DL distance as the “minimum number of insertions, deletions, substitutions or transpositions
required to transform one string into another”. They also make use of the so-called fat-finger
distance, which includes neighboring keyboard characters: Only characters are used that are
approximate to each other on a QWERTY keyboard. In their work, Moore and Edelman only
considered domains of 5-15 characters in order to reduce the risk of generating false typos. Then
they applied the DL algorithm with a maximum distance of two and the fat-finger distance of
one and two. They concluded that “fypo domains with Levenshtein or fat-finger distance one of
popular domains where overwhelmingly confirmed as true typos”. They also observed that the
fat-finger distance typos of popular domain names were more often confirmed as typos as typos
generated with the DL algorithm and the same edit distance [ME10].

Moore and Edelman mention various defenses against typosquatting. One of them is the legal
framework Anti-cybersquatting Consumer Protection Act (ACPA), which was published as legal
lawsuit framework against typosquatting in 1998. Additionally, ICANN introduced the Uniform
Domain-Name Dispute-Resolution Policy (UDRP) that eases the process of deciding whether a
domain name infringes another website or not [ME10]. Their conclusion is two faced: While

it is easy to identify typosquatting sites and their mostly few large providers, the problem will
not cease to exist as long as advertisement networks will not stop to support and corporate with
typosquatters [ME10].

Wang et al. from Microsoft Research developed a method called Strider Typo-Patrol to reveal
“large-scale systematic typosquatters” [WBWVO06]. Their system consists of three major parts:
A typo-neighborhood generator, typo-neighborhood scanner and a domain parking analyzer.
As previously stated, this thesis is mainly interested in the typo generation methods, since they
might help to identify typo packages for the empirical part of the thesis. Wang et al. make use
of five different typo-generation models:

1. Missing-dot typos: The dot following the www subdomain is removed. Example: wwwex-
ample.org instead of www.example.org

2. Character-omission typos: Characters are deleted in the typo variant. Example: gogle.com
instead of google.com

3. Character permutation typos: Following characters are interchanged: Example: exam-
ple.org becomes exmaple.org

4. Character-replacement typos: Characters are replaced according to a proximity table on a
standard keyboard. Example: example.org becomes wxample.org

5. Character insertion typos: Characters are inserted from a proximity table. Example:
example.org becomes exasmple.org

Their typo-generation model resembles the Damerau-Levenshtein distance metric. Wang et al.
should have at least detected this close relation. Their study is from 2006 and thus relatively old.
However, it is the first attempt at a systematic approach to reveal typo domains. They discovered
that “the top six parking services amount for 30% of all algorithmically generated typo domains
and 40%-70% of active ones”. Another critique point is, that they focus only on a small part of
the Alexa top domain list [Ale] to generate typos [WBWV06].

A relatively recent empirical study called The Long "Taile" of Typosquatting Domain Names
(2014) [sic!] from Szurdi et al. examined “the whole popularity distribution” of typos instead of
focusing just one the most popular hostnames [SKCS14]. The study revealed that 95% of typo
domains focus on less popular domains and that the advertisement monetization infrastructure
also exists for these domains. They estimate that around 20% of all .com domains are true typo
domains (21.2 million hosts). Szurdi et al. make use of Damerau-Levenshtein algorithm with
distance one. They also include typos that arise through the missing of the dot between the www
subdomain and the hostname. They are also aware of the far-finger distance. Their data source
includes the whole .com zone file with 106 million domain names and the Alexa list of top one
million sites [SKCS14].

Szurdi et al. generated the candidate typo list with the following edit operations: Addition,
deletion, substitution of one character, transposition of neighboring characters. They found out
that this generated set includes 4.7 million existing candidate typos. Then they proceeded to
crawl this set of typos to further classify the results with content related techniques. Their work
is very good in illustrating that the majority of typo domains do not target the most popular
domains. Szurdi et al. finish their work by publishing their YATT (Yet Another Typosquatting
Tool) framework, which essentially allows DNS servers to blacklist and filter out typo domains.
They also created a frontend for the framework (as a Firefox plug-in) which contacts their typo

protection DNS server. In this bachelor thesis, mostly popular package names have been used as
a basis for typo generation. Future work could proceed similarly as Szurdi et al. and exploit
typos in the Long "Taile" of Typosquatting Names [sic!] [SKCS14].

Kahn et al. developed an intent reference technique to find typosquatting domains by passively
observing web traffic and detecting typosquatting typical behavior like: High bounce rates
after visiting the typo website, direct entering of URL’s and visits to other, more popular sites
after mistakingly having visited the typo site[KHLK15]. The passive data source consists of
HTTP and DNS requests recorded in a large U.S. university network. The HTTP data was
anonymized (hashing of IP addresses) before the analysis was conducted. Another dataset
consists of HTTP/HTTPS traffic logs from a large technology service provider [KHLK15].

A common disadvantage of lexical techniques (such as edit distance algorithms) to determine
typo candidates is the potentially high false positive rate. Kahn et al. argue that it is easy to make
mistakes: Nhl.com could be considered a typo of nfl.com, although both domains are legitimate
websites. Disadvantages are that lexical models “might not capture all user typos, and it cannot
capture typos which are not yet registered”. Kahn et al. are convinced that to determine user
harm, the analysis must compare between the lost time of seeing a website not unavailable error
in a browser, and the time wasted through activity of users on a typosquatters website. The typo
happens either way — They argue that it might even be the case that the presence of an annoying
typo leads to a quicker correction of the users mistake [KHLK15].

Kahn et al. introduce a Conditional Probability Model to determine the probability whether
a specific action can be considered the direct cause of typosquatting. The difference between
a typosquatting site and two sites which are unrelated but still possess a close Damerau-
Levenshtein distance are, that in the former, the original intent to visit another site still exists
[KHLK15]. This “aggregate evidence that visits to a given site are almost always followed by
visits to a lexically similar site, without the converse being true” is the fundamental property of
their Conditional Probability Model. This alternative metric to find potential typo candidates
identifies typo sites based on a cunning mix of behavioral heuristics and lexical similarity and is
definitively an improvement over typo identification with string similarity metrics only. Their
Conditional Probability Model model could also be used by package repositories as a defense
mechanism, because all user interactions are logged in real time on the web server’s log files
[KHLK15].

Agten et al.’s study is the first longitudinal research about typosquatting in which they observe
the top 500 domains of the Internet over the course of seven months [AJPN15]. By collecting
over 900 GB of typosquatting data, they are “able to investigate the changes of typosquatting
over time”. Their main result is, that most top sites do not make use of defensive registrations.
They were also able to find out that 50% of all typo domains belong to only four typosquatting
providers and that 75% of short popular domain names are already registered. Thus typosquatters
increasingly proceed to register longer typo names and change their monetization strategy over
time. Their typosquatting model uses the Damerau-Levenshtein distance of one and fat-finger
distance of one. Their model is closely related to the model of Wang et al. [WBWV06;
AJPNIS].

Agten et al. observed the number of typo category changes over time: They plotted an average
of 2.84 typo category transitions during the seven months (sites changing from malicious to
legitimate and vice versa) [AJPN15]. Future work that builds on top of this thesis may make use

00 1O\ LN A W=

D) = = = = e s = e e
SO 00N NP~ WN = O\

Figure 2.1: Implementation of the Hamming distance in Python.

def hamming_distance(a, b):
Computes the Hamming distances between strings a and b.
requires:
len(a) == len(b)
ensures:
len (retval) <= len(a)
nmmn
if not len(a) == len(b):
raise Exception(’Strings a and b must have the same length.’)
n =0
for i, j in zip(a, b):
if i !'= J:
n +=1
return n
if _ name_ == '_ _main__ ':
print (hamming_distance (’alpha’, "aupna’))

of the longitudinal aspect of Agten et al.’s study: Observing typosquatting in package managers
over time could reveal hidden trends and patterns [AJPN15].

2.3 Edit Distance Algorithms

’

Edit distance algorithms “allow to delete, insert and replace simple characters in both strings’
and each of these operations can have different costs [NavO1]. There are a variety of different
string edit distance metrics [NavO1]. In this section, the most important ones are presented and
then they are introduced with some illustrative code in Python. For our purposes, the Levenshtein
distance and the Damerau-Levenshtein distance metrics are important algorithms, but there are
also other approximate string matching algorithms. This thesis makes use of the edit operations
of the Levenshtein distance in order to generate typo names for npmjs.com algorithmically (The
process of creating these names and the algorithm used can be looked up in section Generation
of Typosquatting Targets on page 16).

2.3.1 Hamming Distance

The Hamming distance is given by the number of different symbols in two equally lengthy
strings, by comparing characters with the same index only [Ham50]. The Hamming distance of
the two strings abcdq and gbdde is three, because the first, third and fifth character are different.
Therefore, the Hamming distance only allows replacements (substitutions) with cost one as
simple edit operation [Nav01; Ham50]. This simple metric was implemented using Python and
can be reviewed in Figure 2.1.

2.3.2 Levenshtein Distance

The Levenshtein distance is defined as the minimal amount of insertions, replacements and
deletions to transform a source string a into the target string b, whereby each of these three basic
operations have the same cost [NavO1]. The Levenshtein distance is named after the Russian
mathematician Wladimir Levenshtein, who introduced this string similarity metric in 1965
[Lev66]. The Levenshtein distance was developed to improve signal processing by creating new
electronic error correction codes [NavO1]. Physical transmission of signals is very error prone
and there was a need to find the original message after a failed delivery. Therefore, such error
correction codes have been developed and the Levenshtein distance was invented [Nav01]. The
Levenshtein distance is defined recursively on two strings a with length i and b with length j for
which i, j > 0 as follows [RY98]:

D(i—1,j)+1
Dyp(i,j)=min{ D(i,j—1)+1 (2.1)
whereby 14,5, is the indicator function, which is 1 whenever a; # b; and O otherwise. An

alternative form of the recurrence relation for the Levenshtein distance D(i, j) for strings a with
length i and a string b with length j can be taken from [NavO1]:

D(i,0) =i (2.2)

D(0,j)=j (2.3)

D(i,j) =if (x,- = yj) then D,'_17j_1 2.4)
else 1 +min(D;_1 j,Dj j—1,Di—1,j—1) (2.5)

The Levenshtein algorithm is mostly implemented using dynamic programming in a bottom up
fashion [RY98]. A matrix is populated with edit distance values between all substrings of a and
b. The running time of the algorithm is O(|a||b|) in the worst and average case, whereas only
O(min(|al,|b])) space is needed [NavO1]. The Levenshtein distance algorithm is implemented
in Figure 2.2. When the code in Figure 2.2 is executed, the Script calculates the Levenshtein
distance for the strings kitten and sitting and prints the dynamic programming matrix generated
during the execution of the algorithm.

2.3.3 Damerau-Levenshtein Distance

Whereas the Levenshtein algorithm consists of deletion, insertion and substitution operations, the
Damerau-Levenshtein algorithm adds transpositions of two neighboring characters to the set of
allowed operations [Dam64; Lev66]. Damerau lists the following edit operations examples in his
paper: ALPHIBET instead of ALPHABET (substitution), ALHPABET instead of ALPHABET
(transposition of neighboring characters), ALLPHABET instead of ALPHABET (insertion) and
ALPABET instead of ALPHABET (deletion) [Dam64].

The American mathematician Fred J. Damerau worked similarly as Levenshtein on error cor-
rection codes and published his paper on spelling errors in 1964 [Dam64]. In this thesis, the
Damerau-Levenshtein string distance metric is not further used, because the edit operations of
the classical Levenshtein algorithm are sufficient.

10

Figure 2.2: Implementation of the Levenshtein distance in Python.

import pprint

def levenshtein(a, b, debug=True) :

00 1O\ LN A W=

ABA DR DWW LW LW WL LW W LW WIENDNDNNDNDDNEDNDNDDNIN === = =
WO~ OOV NIAE WO, OOV NEAE WD, OOV W~ O\

nmnmn

Computes the Levenshtein edit distance between
the string a and string b.

requires:
(len(a) > 0 && len(b) > 0)

ensures:
(return >= 0 && return <= max(a, b))

if not (len(a) > 0 and Ien(b) > 0):
msg = ’Strings a and b cannot be empty.’
raise ValueError (msqg)

D =[]
for i in range(len(a)):
D.append ([])
for j in range(len(b)):
D[1].append(0)

for i in range(len(a)):
D[i][0] = 1

for j in range(len(b)):
D[O][J] = 3

for i in range(len(a)):
for j in range(len(b
[
[

)
]

)
cost = [1, Ol[ali] == b[j]l]
D[i][j] = min(D[i-1][3] + 1,
D[i][j-1] + 1, D[i-1]1[J-1] + cost)

if debug:
pprint.pprint (D)

return D[-1][-1]

14

if name == '/ _ main :

print (levenshtein (’kitten’, ’sitting’))

2.3.4 Longest Common Substring Distance

The longest common substring distance of two strings is the minimal number of characters to be
deleted and inserted in order for them to become equal [NavO1; NW70]. The longest common
substring distance between the words alpha and axxha is 4, because in each string two characters
need to be removed and inserted in order to get two identical strings. Both edit operations do
cost one. The name of the distance originates from the fact that the algorithm considers the
longest common substring, before it starts to delete or insert characters to approximate both

11

strings [Nav01]. Furthermore, the distance is symmetric and the property 0 < d(x,y) < |x| + |y|
does hold [NavO1].

2.3.5 Q-Gram Distance

When two strings a and b are split up in g-grams (whereby g < min(a,b)) and count the number
of times these q-grams do not appear in the other string, the g-gram distance of two strings is
obtained [U1177].

2.3.6 Metaphone Algorithm

The Metaphone algorithm is the progression of the Soundex algorithm and was first developed
to identify different surnames by Lawrence Philips in 1990 [LKDRO7; Phi00]. The Metaphone
algorithm transforms a string to an encoding, which has a related phonetic pronunciation.
When two strings output an identical phonetic hash value, they are regarded to have the same
pronunciation [LKDRO7]. This makes it possible to apply the Metaphone algorithm on two
strings, a and b, whereby b is a typo version of the string a, and yield the same phonetic
representation for the two inputs: Metaphone(a) = Metaphone(b) (This concept is called
similarity key [PN11]). In comparison to the Levenshtein distance, the Metaphone algorithm
only works with English words [Phi00]. Furthermore, phonetic information is processed in the
algorithm, whereby the Levenshtein algorithm cannot include such linguistic meta information.

Using phonetic algorithms to create typo candidates that have a higher possibility to be mis-
spelled is certainly the way to go in a systematic approach, but it remains unclear how well
a phonetic algorithm would work with package names, that are not necessarily related to the
English language. Another constraint of the Metaphone algorithm is its proprietary license
(Compare with http://www.amorphics.com/buy_metaphone3.html, accessed on
15th March 2016) and the difficulty in obtaining a recent implementation for free. After all,
the proposed defenses should be based on openly accessible algorithms, such that third party
package repositories, which are often community driven, can make use of them.

12

3 Methods

Before the empirical study could begin, the main intention with this thesis needed to be de-
clared: That some of the biggest and most frequently used package managers for much used
programming platforms, can be attacked with typosquatting methods, which were exhaustively
researched in combination with the domain name system (DNS). In other words: It will be
shown that the state of the art security of package managers is so inadequate, that it allows
averagely technical gifted attackers to launch large distributed attacks and even create botnets
within just a few weeks.

The experimental setup which was established before the study could begin, was rather simple
and essentially the same as with the pretest back in January 2015. First and foremost, a simple
web application with the Django web framework and nginx as a web server was developed
(1). The web application basically allows to store parametrized HTTP requests in a sqlite3
database for further evaluation. The web application also included CRUD functionality and a
basic statistical overview over all received installations. The University of Hamburg provided
the thesis author with a virtual private server (running Debian) in their datacenter to host the
application. The server was thoroughly tested in a local environment, and after setting it up
using Uwsgi on the university web server, also remotely.

Then in a second step, the notification program that would inform the web server about a
successful package installation, was implemented for the three chosen target programming
languages (Python, Node.js and Ruby) (2). The logic in the implementation of these three
notification programs was essentially identical. Their task is to run as stable as possible (on all
major versions of the language still in use) and send a HTTP request with the collected data
to the web application. It was not sufficient to write only one version in one programming
language, because the targeted systems would only guarantee, that the language of the installing
package manager was available.

In a further step, a template package for all three package managers was created and tested (3).
Then the notification program was included in those three template packages. The advantage
of this approach is, that only meta information like package names and package descriptions
needed to be changed, whenever a new typo package was uploaded.

Then the typos were created. Typo names have been chosen by examining the most downloaded
packages of the targeted package repositories and by finding lucrative typo names manually in a
creative, mental process (4). For two popular package names (request and async) of npmjs.com,
all possible typos with edit distance one were generated algorithmically.

The final step encompassed the creation and upload of all packages for all used packages names
to the package repositories (5). After all packages were unregistered, the sqlite3 database with
the saved installation data was downloaded from the server for the empirical analysis of the
results.

13

Table 3.1: Total number of downloads for some well known package repositories [DeB].
Names in cursive font are the repositories targeted in this thesis. Source:
http://www.modulecounts.com/, accessed on 24th February 2016.

Package repository Total downloads Average daily growth
Npm (node.js) 244180 414/day
Maven Central (Java) 133901 95/day
Rubygems.org 114792 47/day
GoDoc (Go) 113664 267/day
Packagist (PHP) 87044 120/day
PyPI (Python) 75269 74/day
Nuget (.NET) 50679 35/day
Bower (JS) 49298 46/day
CPAN 33435 6/day
CPAN (search) 33435 6/day
Drupal (php) 33288 12/day
Clojars (Clojure) 15175 11/day
Hackage (Haskell) 9391 2/day
CRAN (R) 7972 6/day
Crates.io (Rust) 4156 9/day
MELPA (Emacs) 2956 2/day
Hex.pm (Elixir/Erlang) 1597 9/day
LuaRocks (Lua) 976 1/day
Pear (PHP) 602 0/day
Perl 6 Ecosystem (perl 6) 569 1/day

3.1 Targeted Programming Languages

As mentioned before, the programming languages Python, Node.js and Ruby were targeted
during this thesis. All of these computer languages are high level scripting languages and
are much used in scientific research (Python with its numpy, scipy and matplotlib frameworks
for scientific computing), web work (all of them, but mostly Node.js and Ruby with its Ruby
on Rails framework) and system administration tasks. Table 3.1 shows the total number of
downloads of some well known package repositories [DeB]. The chosen programming language
repositories have a large community of contributors and many packages with high download
numbers (even though the download count and number of uploaded packages does not tell
much about the real industry prevalence of said languages). Their rank by total downloads is
1. (Node.js), 3. (Rubygems.org) and 6. (PyPi) as Table 3.1 shows. Other reasons for choosing
these languages besides the popularity, are going to be discussed in the next section.

3.2 Prerequisites for Typosquatting Attacks

Not every package manager is vulnerable to typosquatting attacks. There are some requirements
which need to be taken into account, before attacking a package repository (Listed in decreasing

14

importance in the ordered list below). The first two points in the following list need to be
fulfilled, otherwise the package repository is not attackable by typo squatting attacks.

1. The possibility of registering any package name and uploading code without supervision.
2. The feasibility to achieve code execution upon package installation on the host system.

3. Accessibility and presence of good documentation for uploading and distributing packages
on the package repositories.

4. Difficulty in quickly learning the target programming language.

This kind of attack works best, if code is directly executed upon a module download, triggered
by the package manager client program. In Python, each package that is publicly registered,
needs to have a setup.py file that contains package meta data such as names, description and
fixtures belonging to the package. Whenever a user installs a package from the PyPi package
repository, this setup.py is executed by a local Python interpreter. This means, that it is possible
to hide the import statement for the notification program in the setup.py file and thus execute
code there.

Node.js and its package manager, npm, provide various hooks on specific events to execute code.
There is also a preinstall option that can be set in the package.json file, that provides options
and metadata for a published Node.js package. It is favorable to write this preinstall script also
in Javascript and execute it with the node binary, because node is guaranteed to be installed on
the target system, when npm is used to install third party packages.

Achieving code execution with Ruby was slightly trickier. There is no official way (like in
Node.js) or easy method (like in Python’s setup.py file) to execute code upon installing packages
with the Ruby package manager named gem. However, code execution was achieved by
creating an empty native Ruby extension and placing the notification code in a Ruby extension
configuration file named extconf.rb, which is interpreted during the pseudo build process. It
is assumed that not all users who were tricked to install Ruby typo packages, would execute
the notification code, because the hosts need a native build stack and compiler suite in order to
execute the extconf.rb file and build the native source code. This method to gain code execution
during the installation process was inspired by Victor Costan, who blogged about this as early as
2008 [Cos08].

Several other programming languages were also evaluated and tested for their attacking propen-
sity. The next criteria, the quality of package repository documentation, was also satisfied
by Python, Ruby and Node.js. During this thesis, more than three package managers were
intended to attack, but some of them had such a bad documentation quality (CPAN, the Perl
package repository, for example) that they were ignored altogether. The following section further
elaborates why some programming languages were rejected.

3.3 Rejected Programming Languages

It has been tried to add more programming platforms to the typosquatting attack. Bower
(Javascript), CPAN (Perl), Nuget (.NET), Packagist (PHP) and R (CRAN) were examined closer,
and for each of them, reasons were found, to not include them in the attack.

15

There is no way to execute code upon package installation in Bower — The authors stated
rightfully in a open discussion, that allowing code to be executed, would be a huge security
risk and thus was made impossible [Sc13]. The CPAN ecosystem was simply too complex and
cumbersome to try to attack. The declining popularity of CPAN and Perl in the past years was
another reason to exclude it from research. Nuget from .NET seems to be a good candidate for
a typosquatting attack. It was not included in the research because of time problems. There
are nevertheless many indications that Nuget is exploitable by typosquatting attacks as well:
Jeff Handely, core developer of the Nuget team, wrote in a blog post from October 2014 that
“Nuget is broken by design” and that “Many are still shocked that NuGet allows packages to run
arbitrary PowerShell scripts during package installation” [Han14].

Packagist (PHP) is not vulnerable to direct code execution upon package installation, because
all installed packages are stored as dependency in sub folders, which are never directly touched.
CRAN (R) was not investigated closer because of time pressure. However, it would make sense
to examine it closer in future work.

3.4 Generation of Typosquatting Targets

After having chosen the programming languages to be attacked, the typo packages names needed
to be generated. Each programming language package repository has a statistical site with a
list of top installed packages [rub; Tai; npm]. This information was used to determine possible
typo candidates. Another information source for packages that exhibited a propensity to be
misspelled, was the experience of the author with the language Python: Over the course of
years, many misspellings were made and various pitfalls in relation to package names and their
installation were learned.

Once the set of names to attack were found, typo variations were generated: These names were
either found in a creative mental process or they were generated with the Levenshtein algorithm.
All possible typos with Levenshtein distance one for the two package names request and async
were created, to find out more about the popularity distribution of those two names. Those two
package names were chosen, because they are both popular packages in Node.js (npmyjs.com):
Request had 570715 daily downloads and 13308774 monthly downloads. The download count
for async with 1096407 daily downloads and 26292179 installations in the last month is even
higher (Data accessed on the 19th February 2016).

All the edit distance algorithms discussed in the theoretic section incorporate different use cases.
In this thesis, a very simple typo generator for request and async was used. The algorithm
made use of three edit operations: Insert operation, replace operation and delete operation.
The implementation only processes the characters of the source string, without introducing
characters outside of the source string (like the fat-finger distance does for instance). The
algorithm generates all possible typos with edit distance one.

To compensate for the lack of characters that are close to the source characters on a QWERTY
keyboard, typos obtained from three typo generation tools, which are available online, were
considered. The list of all used typos for request and async can be found in the Appendix in
section Data for Algorithmically Generated Typos on page 59. The algorithm used to generate
the typos can be inspected in the code listing below. The algorithm is based on the Levenshtein
distance.

16

0O\ N AW

LN onhndbh b B BSDS DSBS D BB WL LWL LWWLW LWWERNNDEDENNDDNDNINDDNED = /= === =
0NN WD, OOV NIE WD, OOV ANANNE WD OLOVOIANNE WOV IONWNDRWN~=O\VO

def generate_typos (s):

Generates typos with edit distance one for s.

requires:
A non empty string s.

ensures:
To return a set of all possible
typos with edit distance one generated
by the delete, replace, insert operation.

nmwn

results = set ()

for i, char in enumerate(s):
results.add (delete_op (s, 1))
for j, _ in enumerate(s):
results.add(insert_op(s, char, 7j))
results.add(replace_op (s, i, 3J))

return results

def insert_op(s, c, 1):
mmwnw
Inserts the char c¢ at index i and
returns the new string.

requires:
(len(s) > 0 && len(c) ==
&& 1 in range (0, len(s)+1l))

ensures:
(len(retval) + 1 == len(s))
assert Jen(s) > 0 and Jen(c) == 1\

and i in range(0, Ilen(s)+1)

return s[:i] + ¢ + s[i:]

def replace_op(s, i, 3J):
nmnmn
Replaces/substitutes the char at position i with the char
at position j.

requires:
(len(s) > 0 && J in range (0, len(s))
&& 1 in range (0, len(s)))

ensures:
(len(retval) == len(s))
assert (len(s) > 0 and j in range (0, Ien(s)) \

and i in range(0, Ien(s)))

1l = 1ist(s)
temp = 1[i]
1[1] 1031
1[07] temp

17

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

def

if

return '’ .join (1)

delete_op(s, 1i):

mmomn

Deletes the char at position 1i.

requires:
(len(s) > 0 && 1 in range (0, len(s)))

ensures:
(len(retval) == len(s))

LR

assert (len(s) > 0 and i in range(0, len(s)))

return s[:i] + s[i+1l:]

I4 I4

name == main S

typo_names = ["async’, ’'request’]

for typo in typo_names:
print (generate_typos (typo))

3.5 Collected Information

The logic implemented in the notification program essentially collects the following non personal

information and sends it to the university web server in the parameters of a HTTP request:

The typosquatted package name and the (assumed) correct name of the package. This
information was hard-coded in the notification program before the package was distributed.
Example: coffe-script and coffee-script (correct name).

The package manager name and version that triggered the operation. The package manager
name was also hard-coded, before the package was uploaded. The package manager
version was retrieved dynamically. Example: pip and the outputs of the command pip
—--version

The operating system and architecture of the host. Example: Linux-3.14.48

Boolean flag, that indicates whether the code was run with administrative rights. Getting
this information on Windows systems is not trivial and possibly error prone.

The past command history of the current user that contains the package manager name
as a substring. This information could only be retrieved from unixoid systems, because
Windows systems do not store shell command history data. Example: Output of the shell
command grep "pip[23]? install" ~/.bash_history

A list of installed packages that were installed with the package manager.

Hardware information of the host. Example: Outputs of 1spci for linux. On OS X, the
outputs of system_profiler -detaillLevel mini were taken.

The complete database schema used on the web server, can be found in the Appendix in section
Database Layout on page 64.

18

4 Results

4.1 Summary of Results

The empirical phase started on the 4th November 2015 and ended on the 21th December 2015.
After some weeks, a second part of the empirical phase was launched to expand on potentially
high download typo candidates that have been extrapolated from the command history data of
previous installations (Compare to section Analysis of Command History on page 33). This
second stage empirical phase was conducted between the 18th and 26th January 2016. In
those two empirical phases, exactly 45334 HTTP requests by 17289 unique hosts (distinct
IP addresses) were gathered. Packages for three different package managers, PyPi (Python),
rubygems.org (Ruby) and npmjs.com (Node.js — Javascript) were uploaded and distributed. Most
installations were received from PyPi with 15221 unique installations measured by distinct IP
addresses. Then rubygems.org follows with 1631 distinct installations. Npmyjs.com with 525
total unique IP addresses counted, had the smallest number of installations.

At least 43.6% of the 17289 unique IP addresses executed the notification program with ad-
ministrative rights. From the 19603 distinct inferactions (See definition in Terminology on
page 5), 8614 machines used Linux as an operation system, 6174 used Windows and 4758
computers were running OS X. Only 57 hosts (or 0.29%) could not be mapped to one of these
three major operating systems. These were mostly FreeBSD and Java operating systems (Or
in rare instances, junk data that was submitted manually and thus not possible to parse). The
number of interactions is higher than the number of unique IP addresses, because interactions
are defined as the number of unique (remote address, administrative rights, host os) tuples.
Therefore, if one single user installs typo packages with three different operating systems, this
will count as three distinct interactions.

To get a first impression of the results, a plot that visualizes unique installation requests over
time was created in Figure 4.1. The figure is divided into two subplots. The first plot displays
the daily installation count of all packages over the timespan of the whole empirical phase.
The second plot splits the installations in two disjoint sets: The number of installation caused
by the top five packages as one plot (circles as markers) and all unique installations from
the rest of all remaining 209 packages as another plot (data points with squares as markers).
Furthermore, the graph also shows the number of unique installations that were conducted with
administrative rights in the light version of the plotted lines. Figure 4.1 displays Saturdays (CET
time) as vertical dotted lines. It is recognizable that installation numbers drop significantly on
weekends.

The lack of installations during the second half of December 2015 and the first half of January
2016 can be explained with a pause in the empirical phase. No packages were distributed during
this time and therefore no installations are recorded. The very low installation count during this
phase (Visible in Figure 4.1) originates from a small number of installations that was observed,
although no typo packages were uploaded. A possible explanation for this phenomenon is that

19

existing packages were reinstalled or distributed over different channels than the primary source
(repository).

4.2 Distribution of Installations per Package

If the number of unique installations for each uploaded package is accumulated and plotted
(Figure 4.2), one can immediately see that the plot resembles a function with logarithmic
distribution. Very few packages amount for almost all installations. 214 distinct packages
amount to total 19721 unique installations. The first five packages only have already 12869 or
65.25% of all installations. The top ten packages together amount to 83.1% of all installations.
Here the number of unique installations for all packages is larger than the number of unique
IP addresses encountered in the empirical phase (19721 versus 17289). Some users installed
more than one package (1.14 packages per user on average), therefore the aggregated sum
of installations for all packages is higher than all encountered IP addresses. How can this
extreme installation distribution visualized in Figure 4.2, with few very popular typo packages,
be explained?

A possible answer for this phenomenon lies in the different package quality to cause installations.
Some typo packages used in the empirical phase were originally Python2 standard library names
(For example the package names urllib2, urllib, cpickle, md5 and others) that did not continue to
exist in the language successor Python3. Therefore, a lot of people tried to install the missing
packages via the Python package manager, although the PyPi package repository does not host
Python core packages. This immediately leads to the dangerous insight that it is possible in PyPi
(and also in rubygems.org) to register packages that have the same name as standard library
packages and thus to exploit the confusion people have with such package names.

Some statistical metrics of the installations received during the empirical phase are the follow-
ing:

e 214 total different uploaded typo packages on three different package repositories
e 92 average installations per package
e The standard derivation of installations per package is 433 and thus relatively high

e The most installed package (urllib2) received 3929 unique installations in almost 2 weeks
(284 average installations per day)

e The most installed package per day was bs4 with 366 unique daily installations on average
o The least installed package had only one installation (Probably by a mirror or crawler)

The observation that different package names cause drastically different installation numbers
motivates the clustering of uploaded package names in three different categories:

1. Creative typo names like coffe-script instead of coffee-script
2. Stdlib typos or core package names like urllib2

3. Algorithmically determined typo names like req7est instead of request

20

Total number of installations

1000
e—e All installations
' ' ' ©-0 All installations with administrative rights
| | | --- Saturdays in CET time (vertical lines)
800 : : : ' ; ; ; ;
600 E E E E E E E E
400 rol : : : : : : :
, @ , , , , , , , ,
200 . , , , , , , , , ,
.0 P % | : : : : : : :
® , , , , , ,
: : o0 . . : : : :
0 n n 1 1 1 1 1 n YaVa'aVavanta
Nov 05 2015 Nov 19 2015 Dez 03 2015 Dez 17 2015 Dez 312015 Jan 14 2016
900 Installations of top five packages (circles) and installations of remaining packages (squares)
' ' ' ' ®—e |[nstallations of top five packages
800 ©-0 Installations of top five packages with administrative rights
H H H H m—a [nstallations of remaining packages
700 ' ' ' ' oO-0 Installations of remaining packages with administrative rights
H H H ' --- Saturdays in CET time (vertical lines)
600 , , : : : : : : :
s00| | E ' E E E E E
400 , , , , , , ,
300f i ' ' i i
200 , , , , , ,
100 : : . : : :
0 bt DHDDDmD ' AAAEANAAAAAAL o P S R P
Nov 05 2015 Nov 19 2015 Dez 03 2015 Dez 17 2015 Dez 31 2015 Jan 14 2016

Figure 4.1: Visualization of installations in the empirical phase. Each point shows the installa-
tions on a certain day. The upper plot shows the total number of unique installations
on each single day. The light dashed line are the installations with administrative
rights. The bottom plot splits up installations in two sets: From the top five installed
packages (circles as markers) and the rest of all packages (squares as markers). Light
sub-graphs show the administrative ratio.

21

Cumulative sum of installations of the top 100 packages

20000

18000 .“p
16000
14000 o
12000
10000/ ¢

8000

Number of distinct installations

6000

4000

2000 20 40 60 80 100

Number of packages

Figure 4.2: Cumulative sum of installations for the top 100 packages by number of installa-
tions. The cumulative sum converges rapidly to the sum of all installations (19721).

Packages are sorted descendingly by average installations per day.

4.2.1 Creative Typo Names

The origin of creative typo names is the lack of peoples ability to distinguish the correct from
the false version of the name. Alternatively, the cause for confusion might be a grammatical-
ly/semantically slightly different alteration of the name. Often only humans can create these
kinds of typos, because its creation process requires an intuitive understanding of What gram-
matical mistake is easy to make with the origin name. The package name coffee-script perfectly
illustrates this concept: A software (using the Levenshtein distance algorithm) would not be able
to understand why coffe-script (1) is a better typo than cofee-script (2), because both typos have
an edit distance of one and both typo versions were obtained through a delete-operation in a
repeated letter. For humans however, (1) intuitively resembles more to the real name than (2). It
could be argued that the 2-gram ee is much more rare than the 2-gram ff and thus people will
commit the typo (1) more often. However, there are many such heuristics and no algorithm can
consider them all. Creative typos cannot easily be created by algorithms, because only humans

have a good understanding of human misspellings.

4.2.2 Stdlib Typos and Core Packages

Stdlib typos are no typos in the original sense, because there does not exist a correctly spelled
counterpart in the package repository. Standard library names should either be reserved by the
core language designers or impossible to register for normal users. Programming language

22

users often get confused when using different major versions of languages (such as Python2
and Python3 or Ruby 1.9 and Ruby 2.1) by their inconsistencies in naming core packages. For
instance, Python2 has a package called urllib2, but Python3 does not. To make things even more
complex, there also exists a package named urllib3 on PyPi only, but not in the core of Python2
or Python3. All of these naming similarities will entice people to reinstall missing functionality
with package managers, because they are confused and they think installing it with the third
party package manager will resolve their problems.

It is not easy to clearly differentiate between creative typos and stdlib typos. As a rule of thumb,
all names that do already exist in the typo spelling and have not a typo in the original sense, are
regarded as stdlib typos. All names that have a real typo in themselves and cannot easily be
algorithmically generated are classified as creative typos.

4.2.3 Algorithmically Determined Typo Names

Algorithmically determined typo names are typos generated programmatically using various
algorithms such as the Levenshtein edit distance. These algorithms have limited capabilities
in generating high quality typo names, because it is an Al task to find package names that are
prone to misspellings for humans. These algorithms cover the whole popularity distribution of
typo names. They might be modified by heuristics or trained by artificial intelligence techniques.
One example heuristic that would make generated typos more potent, is to prefer words with
two identical letters next to each other. For example, the candidate word coffee-script would be
more attractive than the word coca-cola.

4.2.4 Implications

The most important result in this section is the discovery of different classes of typo names. With
this insight, one can see that stdlib typos had by far the most impact in terms of raw installation
numbers. Then creative typo names follow by a wide margin. In fact, there is no package
belonging to the creative or algorithmic category in the top ten packages (Compare to Table
4.2). Algorithmically determined typo names tail at the end of the ranking. The top packages
sorted by number of average daily installations are illustrated in Table 4.2. As Table 4.2 shows,
there are two different metrics to measure the installation count of the submitted typo packages:
The public package statistics from the package repositories (nis) and the installation count based
on the empirical data the notification program submitted (ni,). In this thesis, whenever unique
installations numbers are mentioned, the metric based on empirical data is meant (ni,), except it
is clearly stated that the download count from repository statistics are used (ni).

It is immediately recognizable from Table 4.2 that stdlib typos rank at the top and that PyPi (pip)
packages were installed most. It should be noted that the installations of the top 20 packages
together amount to 95.5% of all installations. In Table 4.1 and Figure 4.3 the installation count
for all packages has been plotted such that the typo category distribution is visualized. Stdlib
typos with 95.6% of all installations are installed much more than creative typos (2.3%) and
algorithmically created typos (2.1%). Figure 4.3 shows clearly that stdlib packages are at the
top of the installation count distribution, although there are much less stdlib packages than
algorithmically created ones (26 stdlib packages and 167 algorithmically created packages).

23

Table 4.1: Installation distribution of the three different typo categories.

Typo Category ~ Number of Installations

All installations 19721 (100%)
Stdlib 18855 (95.6%)
Creative 459 (2.3%)
Algorithmical 407 (2.1%)

10 Installation count of all uploaded packages by unique IP addresses

® @ Stdlib typo packages
A A Algorithmic typo packages

103 [J [0 Creative typo packages

P

102

101!

10° i’

-10°

10!
10 0 50 100 150 200

Modules

Figure 4.3: Plot of installations (ni,) of all packages classified into the three different typo
categories. The top packages belong to the stdlib typo category, creative typos
follow and algorithmically created typos trail at the end of the popularity distribution.
Note that the Y axis has logarithmic scale.

Other major factors of typo packages that affect the installation count, are the popularity of the
correctly spelled version of the typo package and the quality of the typo (given by the propensity
of humans to misspell the name). Due to the low sample size of uploaded packages, there is no
systematic survey about how those two variables affect the installation rate of typo packages.
However, it is strongly assumed that those two variables have a positive correlation with the
installation count. Stdlib packages do not have a correctly spelled version of themselves, because
they are already correctly spelled. These names should not be allowed to exist in the package
repository. Therefore, it is unfair to compare stdlib packages to creative and algorithmically
created typos, because stdlib names are no typos in the original sense.

24

Table 4.2: Table of installation information of the most downloaded packages. pn = Package
name, pm = Package manager, ¢ = Typo Category, ni, = Installation count based
on empirical data, niy = Number of installations based on repository statistics, aid =
Average installations per day, mdi = Maximum installations and minimum number of
installations per day, ut = Upload time of package in days. Table is sorted descending

by aid.
pn pm tc ni, niy aid mdi ut
bs4 pip stdlib 2950 3959 366.26 442/290 8.05
urllib2 pip stdlib 39290 4922 28393 369/183 13.84
urllib pip stdlib 3132 4027 226.28 302/157 13.84
json pip stdlib 2058 3203 185.24 259/128 11.11
git pip stdlib 800 1211 99.12 146/60 8.07
python3 pip stdlib 470 858 62.35 81/54 7.54
re pip stdlib 683 1330 61.38 75/52 11.13
scikit pip stdlib 348 728 46.56 60/42 747
cpickle pip stdlib 1098 1509 44.10 67/16 24.90
httplib pip stdlib 932 1421 3744 59/20 24.90
math pip stdlib 336 770 30.22 43/19 11.12
yaml gem stdlib 526 1179 27.05 50/9 19.45
docker pip stdlib 182 540 2257 31/9 8.06
Y gem stdlib 229 441 21.03 42/7 10.89
uri gem stdlib 334 1154 17.17 48/5 1945
mkmf gem stdlib 310 534 1593 31/6 19.46
coffe-script npm creative 138 177 12.66 6/1 10.90
hg pip stdlib 64 374 8.49 1572 7.54
md5 pip stdlib 187 537 7.53 15/1 24.84
base64 gem stdlib 128 390 6.58 1472 19.46
aysnc npm algorithmic 39 59 5.17 3/1 7.54
gruntcli npm creative 53 94 4.81 10/2 11.01
requst npm algorithmic 29 42 4.20 2/1 6.90
time gem stdlib 44 618 3.97 7/1 11.10
cherio npm creative 42 69 3.81 82 11.02
cofee-script npm creative 35 66 3.79 9/3 9.23
aync npm algorithmic 28 57 3.71 371 7.54
argparser pip creative 47 4031 3.40 72 13.83
setuptols pip creative 23 208 2.43 51 9.47
body_parser npm creative 22 47 2.06 5/1 10.70
docutil pip creative 20 203 2.01 31 9.94
find gem stdlib 39 269 2.00 4/1 19.45
asnyc npm algorithmic 13 37 1.72 6/1 7.54
sha pip stdlib 42 277 1.69 5/1 24.83
coffe-rails gem creative 18 189 1.65 3/1 10.89
reques npm algorithmic 10 48 1.45 2/1 690
ipaddr gem stdlib 16 183 1.44 4/1 11.09
reqest npm algorithmic 10 42 1.39 2/1 7.22
csselect pip creative 11 186 1.38 3/1 7.96
asyc npm algorithmic 10 38 1.33 2/1 7.54

25

4.3 Creating Typo Names Algorithmically

There were four different methods to create typo names for the two package names request
and async. The first method was an own implementation of a distance algorithm as shown in
section Generation of Typosquatting Targets on page 16. The other three sources were typo
generation tools found in the Internet. The results of the empirical phase clearly show that there
is no real additional value in using third party online tools (which advertise that they make use
of statistical data from misspellings in order to create typo names).

If the success of each method is measured by the ratio of total distinct installations and the
number of typos (Installation statistics for the different methodologies can be found in section
Data for Algorithmically Generated Typos in the Appendix on page 59), the own implemen-
tation ranks first, closely followed by the tool from www.digitalcoding.com/tools/
typo—generator.html (Accessed on 16th March 2016). It must be understood that this
ranking has no real statistical value, because the sample size is too small: Only two typo names
were used and only an average of three installations per generated typo package name was
recorded.

4.4 Verification of Installation Count

An unique installation was defined as all unique 2-tuples (IP address, module name) of the data
received during the empirical phase. By comparing these two metrics, it becomes clear that
the installation count of the package repositories (niy) is higher than the number obtained by
counting unique notification requests in the empirical data (ni,) (Compare with Table 4.2).

As the number of installations grows, the gap between the two metrics tends to become smaller.
This effect can be seen in Table 4.2: The two most installed packages, urllib2 and urllib, both
with relatively high absolute installation numbers and high average installation numbers, have a
relatively small gap between the package repository count (nis) and empirical data count (ni,)
for installations. Packages from the same package manager with significantly fewer installations
have much larger nig numbers than ni, numbers.

This observation can be explained in the following way: Every new package is downloaded
automatically by robots and crawlers. Other agents also download the raw files directly instead
of using the package manager. The number ni, however cannot count all the possible kinds of
installations that ni; includes. Other reasons for the smaller ni, numbers are: Some firewalls
block outgoing traffic and thus the notification program is unable to send its data back home. A
further reason is the usage of NAT (Network Address Translation): Installations that originated
from the same IP address cannot be distinguished clearly. In doubt, notification requests are
counted only once. Furthermore, the package repositories count each single installation, even
when several users download packages repeatedly and account for numerous installations in a
short time.

If the Pearson correlation coefficient between nig and ni, is computed for each single package
manager, the following results in Table 4.3 are obtained. The correlation coefficients show that
the download count on the package manager website (nis) and the installation count based on
the obtained empirical data (ni,) correspond closely in npm and pip: Corr,py(nis, ni.) = 0.927

26

Table 4.3: Pearson correlation coefficient for the installations counts of ni; and ni, and the ratio
of the sum of all niy; and ni, installations ().

Package manager Corr(nis,ni,) o =Y ni,/Y nig

pip 0.859 0.555
gem 0.434 0.231
npm 0.927 0.421

and Corrpp (nig,ni,) = 0.859), but there seems to be no correlation between these numbers in
gem, Corrgem(nig, nip) = 0.434.

This observation can be explained by the installation numbers (See also Table 4.4) of some gem
packages: Time (44, 618), multijson (14, 1675), sprocketsrails (1, 277) and multi-xml (1, 283).
The first number (ni,) is much smaller than the second number (ni;). This huge discrepancy
between nig and ni, of those packages is causing the small Corrgep,. As Table 4.2 shows, there
are gem packages with much more balanced ni; and ni, ratios (For example the packages yaml
and csv). Table 4.3 furthermore shows the fraction between the sum of all ni, installations and
niy installations (o). The metric « states: What percentage of the installation count as given
by the package repository statistics (nis) can be backed up with obtained installations via the
notification program (ni,). In other words, « asks: How easy is it to achieve code execution
in the package repositories? Python has the biggest number, 55.5% of all Python installations
depicted in PyPi statistics were actually counted in the empirical data. Ruby installations have
only a 23.1% coverage. A possible explanation for this phenomenon was already discussed in
section Prerequisites for Typosquatting Attacks: In order for the notification program to run in
Ruby packages, a native extension needs to be compiled on installation. Not every host has the
appropriate compiler suite pre-installed. And some packages do not need any build stack, so
there is no compiler suite and thus no code execution is achieved.

The exact reasons why some rubygems.org packages have a much smaller ni, /ni; ratio than
Node.js or Python packages are not clear. However, it is strongly assumed that the cumbersome
code execution method in Ruby is the culprit.

4.5 Anomalies in Measuring Installations

There were 11 typo packages which had a very low empirical installation count (ni,), although
their download count as published on the repositories (ni,) indicate a much larger download
activity. All packages that have a coverage of empirical installations less than 10% (Cov =
ni, /nis < 0.1) are included in Table 4.4. Especially the packages argparser, multijson and
time have relatively large ni; numbers. For those packages, it is not possible that mirrors and
robots amount for the ni; downloads, because other packages (Compare Table 4.2) have similar
niy numbers, but much higher ni, numbers. It is also remarkable that only Python and Ruby
packages are affected, but Node.js does not have packages with small Cov < 0.1. Without having
insight into the exact download statistics and the way the ni; number is calculated, there is no
transparent way to explain those anomalies.

27

Table 4.4: Tables with packages that have installation counts with a coverage of less than 10%
(Cov = ni, /niy). For the meaning of the single columns, compare to legend of Table
4.2. The table is sorted after descending nij.

pn pm tc ni, nig Cov aid mdi ut
argparser pip creative 47 4031 0.01 34 7/2 13.83
multijson gem stdlib 14 1675 0.01 0.78 4/1 1791
time gem stdlib 44 618 0.07 397 7/1 11.1
markup-safe pip creative 4 349 0.01 04 1/1 9.95
multi-xml gem creative 1 283 0 0.1 1/0 9.96
sprockets_rails gem creative 1 277 0 0.1 1/0 998
simpljson pip creative 10 187 0.05 098 2/1 10.19
csselect pip creative 11 186 0.06 138 3/1 7.96
ipaddr gem stdlib 16 183 0.09 144 4/1 11.09

simpeljson pip creative 3 183 0.02 032 1/1 9.44
simplejosn pip creative 10 178 0.06 1.14 3/1 8.8

4.6 Operating System Distribution

The notification program also sent a string with the host operating system to the web server. In
the following section, a discussion of the operating system distribution among all installations
follows.

As shown in Table 4.5, 44% of all installation belong to Linux systems. 31.5% of the installations
were from Windows hosts and 24.2 % belong to OS X computers. There are 19603 total
installations. This number is higher than the number of unique IP addresses counted (17289),
because all unique (IP address, operating system, administrative rights) tuples are considered.
For example, a user who installs a package first with administrative rights and then without,
is counted twice, although she only used one IP address. Furthermore, this way of counting
unique installations is also different to the obtained number (19721) in section Distribution of
Installations per Package on page 20, because there, all unique (IP address, package name)
tuples were counted.

Almost two thirds of all Linux installations were conducted with administrative rights (61.6%).
With OS X and Windows it is the opposite: 68.1% of Windows installations and 73.9% of OS
X installations were conducted with non administrative rights. However, these numbers might
be not completely accurate because of the logic used in the notification program: While it is
pretty straightforward to test for administrative rights on Linux hosts (By comparing the result
of the POSIX function getuid() with zero), it is not trivial to determine the exact user rights on
Windows and OS X (compare code lines 155-162 in section Notification Program in Python in
the Appendix). Reason for this are the different necessary approaches with various Windows
versions to determine the privileges (XP, Vista, Windows 7 or Windows 8). Therefore, the
amount of Windows and OS X hosts with administrative rights could be much higher than the
data in Table 4.5 indicates.

28

Table 4.5: Visualization of installations and their administrative right ratio. Installations are
clustered into three major operating systems (Windows, Linux, OS X) and other
operating systems (Solaris, Java OS, FreeBSD and others). The percentage number
of the sum-rows refers to all 19603 installations and not to the total installations for
this operating system.

Operating System Administrative Rights Number of Installations

All Yes 8552 (43.6%)
All No 11051 (56.4%)
Sum Both 19603 (100%)
Linux Yes 5308 (61.6%)
Linux No 3306 (38.4%)
Sum Linux Both 8614 (44.0%)
Windows Yes 1974 (31.9%)
Windows No 4200 (68.1%)
Sum Windows Both 6174 (31.5%)
0OS X Yes 1238 (26.1%)
0OS X No 3520 (73.9%)
Sum OS X Both 4758 (24.2%)
Other Yes 32 (56.1%)

Other No 25 (43.9%)

Sum Other Both 57 (0.3%)

57 installations could not be assigned to one of the three aforementioned operating systems.
They originated mostly from FreeBSD or Java operating systems. However, their administrative
rights ratio is 56.1%, which is quite high, but not astonishing, because the POSIX function
getuid() is implemented on most unixoid systems. The logic to identify the operating system
from the submitted host OS field was implemented as a Python script in Figure 4.4.

4.7 Installations Over Time

By saving the timestamp of each single installation confirmation, it is possible to investigate
the installation behavior over time of the users. For instance, it is strongly assumed that the
installation rate drops on weekends, when the work force interrupts their work. Figure 4.5
proofs this assumption: The vertical dotted lines show Saturdays (in CET time) and a quite large
decline (around 50% of installations) in installation numbers are visible around those markers.
Only installations whose IP addresses belonged to the European continent have been used in
this graph, in order to prevent blurring due to installations of different time zones.

29

01O AW

[N T NS T NG I NS T NS T S I e e e e e N
N Hh WO~ OOVOIONWUN A WD~ O\O

Figure 4.4: Python code which illustrates the classification of the three major operating systems
from the input of the notification programs.

def get_os (host_os):
Tries to detect the operating system
from the database field "host_os".

requires:
A non empty string in the parameter host_os.

ensures:
To return one of: Windows, Apple, Linux
or Unknown if the operating
system cannot be determined.

o

import re

if re.search(r’ [Ww]indows’, host_os):
return ’'Windows’

if 'mingw32’ in host_os or ’'win32’ in host_os or\

"CYGWIN_NT’ in host_os:

return ’'Windows’

elif re.search(r’ [Ll]inux’, host_os):
return ’'Linux’

elif re.search(r’ [Dd]arwin’, host_os):
return ’'Apple’

return ’'Unknown’

4.8 IP Address Analysis

It is interesting to conduct IP intelligence on the collected data from the empirical phase. The
geographical location of IP addresses can be determined using geoip databases and the associated
hostnames may be found with reverse lookups. Conducting a reverse lookup might reveal which
organizations/institutions commit typos and are affected by the attack.

4.8.1 IP Geolocation

The process of IP geolocation allows to map an IP address to a city or country. There are
commercial databases that offer these mappings. One of them, the MaxMind geoip database,
advertises a free database named GeoLite2 with limited geolocation resolution precision [Max].
By mapping all IP addresses to countries, a table of countries with most installations is obtained
as in Table 4.6. The United States have by far the most unique installations, followed by China.
Then the top economies of Europe as well as Japan and India follow with roughly 1/8 of US
installations. The global domestic product (GDP) in million Dollars and the GDP rank are
included in Table 4.6, to illustrate the correlation of the number of installations with the economic
production power. In most cases, the rank measured by number of unique installations and the
GDP rank, seem to go hand in hand. Only Ireland does not follow this assumed relationship.
Ireland has more unique installations as its GDP rank implies. The relatively large banking and
software service sector of Ireland causes this skew in correlation.

30

160

e&—e Downloads for urllib
m-a@ Downloads for urllib2
--- Saturdays in CET time (vertical lines)

T

140}

120}

100+

80+

60+

40t

20+

Nov 872015] ‘ Nov 25 2015

Figure 4.5: Visualization of weekly installations from European IP addresses for the package
urllib and urllib2. It is recognizable that the installation rate drops on weekends
(vertical dotted lines are Saturdays in CET time).

The Pearson correlation coefficient for the variable unique installations / and the GDP rank
variable G is corr(I,G) = 0.8259 (GDP data from Worldbank, http://data.worldbank.
org/data-catalog/GDP-ranking-table, accessed on 17th February 2016, Note:
Taiwan is not considered to be a sovereign nation in the data of Worldbank). This means that the
number of unique installations and the GDP rank have a high correlation. This relationship is
not particularly surprising, but can serve as confirmation for the validity of the recorded data. If
there was no high correlation, the validity of the gathered data during the empirical phase could
be challenged.

4.8.2 Reverse Lookup

With all obtained IP addresses, it is possible to conduct a reverse lookup. A reverse lookup
resolves an IP address to a host name, whereas a normal DNS lookup maps hostnames to IP
addresses. Because an exhaustive search of all DNS records would need too much processing
power, an extra in-addr.arpa domain was introduced that consists of a tree with “reverse ordering
of the numbers in the dotted-decimal notation of IP addresses” [Tec]. The in-addr.arpa domain
tree requires an additional resource record type named pointer (PTR) resource record. This
resource record creates a mapping in the reverse lookup zone that typically corresponds to a
named host (A) resource record for the DNS computer name of a host in its forward lookup
zone [Tec]. The actual name resolution process is similar to the forward search, because the

31

Table 4.6: Number of installations per country and the GDP rank. The rank measured by the
number of installations (/) and the GDP rank of these countries (G) correlate with a
Pearson correlation coefficient of corr(I,G) = 0.8259.

Country Unique installations (/) GDP rank (G) GDP in Mio. $

1 United States 5810 1 17419000
2 China 2050 2 10354832
3 Germany 743 4 3868291
4 India 727 9 2048517
5 United Kingdom 725 5 2988893
6 Russia 605 10 1860598
7 Japan 579 3 4601461
8 France 469 6 2829192
9 Canada 432 11 1785387
10 Netherlands 314 17 879319
11 Republic of Korea 308 13 1410383
12 Brazil 283 7 2346076
13 Australia 254 12 1454675
14 TIreland 249 43 250814
15 Spain 223 14 1381342
16 Poland 213 23 544967
17 Ukraine 200 59 131805
18 Italy 192 8 2141161
19 Taiwan 177 no data no data
20 Israel 156 37 305675
21 Sweden 147 21 571090
22 Singapore 144 36 307860
23 Switzerland 113 20 701037
24 Belgium 113 25 531547
25 Hong Kong 96 38 290896
26 Turkey 94 18 798429
27 Finland 83 41 272217
28 Austria 81 27 436888
29 Mexico 79 15 1294690
30 Norway 75 26 499817

in-addr.arpa is a plain domain tree. It needs to be understood that “the configuration of pointer
(PTR) resource records and reverse lookup zones for identifying hosts by reverse query is strictly
an optional part of the DNS standard implementation” [Tec]. Therefore, not all IP addresses
gathered in the empirical phase can be mapped to a valid hostname.

The motivation behind this lookup process is that DNS names carry more information than
numeric [P addresses. Often, the hostname makes it possible to find out which organization or
company owns the IP address. The top level domain often carries useful information, such as
whether the organization is educational (.edu), from a government institution (.gov - US only),
or even has origin in military organizations (.mil - US only).

32

Properties of the looked up domains are illustrated in Table 4.7. The reverse lookup revealed
that 5950 IP addresses did not yield a valid hostname. Some Internet service providers allocate
and deallocate their IP addresses dynamically and thus do not have a reverse lookup entry. It is
remarkable that 1249 TP addresses originated from mostly ec2 amazon web services instances.
There are 394 .edu domains from many different universities around the world. This relatively
large number of hosts can be explained by the wide usage of Python, Node.js and Ruby in
the educational sector. There were also 23 .gov domains from governmental institutions of
the United States. This number is highly alarming, because taking over hosts in U.S. research
laboratories and governmental institutions may have potentially disastrous consequences for
them.

From the 11339 hosts that returned a valid hostname, there were also two hosts with a .mil
top level domain. This shows that even very security aware military institutions fall victim to
typosquatting attacks.

4.9 Properties of Successfully Attacked Hosts

In this section, characteristics of hosts that transmitted data back from the notification program
are going to be discussed. This will include information like whether a host can be considered a
server or work station. The notification program was modified during the empirical phase to
send additional meta data:

1. The bash history of all package manager commands.
2. A list of installed packages on the host.
3. System information identifying the hardware properties and settings of the host.

It is important to understand that this additional information was only raised in a later stage of
the empirical phase. So only 1454 installations included command history information. And
only 4205 installations sent back hardware information. This indicates that hosts were much
more likely to send valid data for hardware information than for command history, because only
Unix systems store command history, whereas Windows systems do not.

One interesting question that can be answered with the command history is: Are there other
typos committed by the user in the past? Is it possible to create malware that generates new
typos based on the past command history of infected hosts and finds new lucrative typos, which
in turn are registered again, to gain even more typo installations?

4.9.1 Analysis of Command History

In the middle of the empirical phase, the Python and Node.js notification programs were
modified to send the outputs of the past command history of Linux users. Only commands were
included that had the pip or npm substring in its command. For example, the modified Python
notification program sent the outputs of the following command to the university web server:
cat ~/.bash_history | grep -E "pip[23]? install".

This collected data makes it possible, to inspect some of the packages which infected users
installed in the past. Because the command history file has a limited size, only the newest entries

33

Table 4.7: Distribution of top level domains and substrings in domains of the hosts which
executed the notification program. The table is to be read as follows (example): 394
of total 17289 hosts (from which 11339 successfully resolved to a hostname) had a
.edu top level domain.

Criteria Number of hosts
All hosts 17289
Lookup failed 5950 (34.4%)
Lookup successful 11339 (65.6%)
.mil 2

.gov 23

.edu 394
.com 3122

.net 3073

.org 46

de 505

.us 12

.ch 74

.uk 142

.Iru 324

.pl 170

At 153

€S 50

.l 166

Ar 190
comcast.net 727
amazonaws.com 1249

are shown. The .bash_history file is only available on unixoid systems, so there is no command
history data for Windows systems. 1454 unique installations on Linux and OS X systems with
command history data were received during the empirical phase. Analyzing this amount of data
is very work heavy and doing it all automatically is not intelligent, because it is easy to miss
hidden patterns in the data.

Unfortunately, it cannot be verified that the package name of the last command in the command
history is the name of the notification program, because this command will only be added
to the history when the process already exited. This would have confirmed that the correct
command history is processed. However, the following questions can be answered by analyzing
the command history data:

1. Are there recurring common typos among independent users?

34

2. What are some of the most observed patterns that lead to typos?

3. Can lucrative typos (in an attacking sense) be found by analyzing the past command
history?

In order to answer those questions, a way to find all real typos in the command history was
needed. Luckily, the Python package repository provides a complete list of all registered and
publicly available packages (https://pypi.python.org/simple/, Accessed on 17th
March 2016). So all package names that appear somewhere in a install command in the history
and which cannot be located in this list, are real typos.

The most common typos can be seen in Table 4.8. The table shows the number of times unique
users committed typos. The table is to be read as follows: 90 from total 1454 unique users with
a command history file, tried at least once in their command history to install a module named
git, but did not succeed, because there is no such module in the PyPi repository.

All rows with cursive typo names in the table originate from typo packages that were used and
registered during the empirical phase. The remaining rows however, have not been used in this
thesis.

The analysis reveals a concerning result: By mining the command history for typos, several new
high class typo candidates, which promise large numbers of installations, have been located.
Especially the module names git (misspelled in 90 distinct hosts), scikit (89 unique misspellings)
and bs4 (31 hits) seem to be mistyped frequently among independent users. By registering them,
lots of installations seem to be guaranteed.

By considering that alone the urllib2 package caused an average of 284 unique daily installations
(Compare with Table 4.2), even more installations are expected by the package names git and
scikit. Furthermore, all cursive typo names in Table 4.8 are already highly overrepresented,
because the command history data originates from installations of these names. Therefore, it is
much more likely that these users tried the same installation already in some time in the past.

Another insight can be deduced from Table 4.8: Almost all typos are no real typos, but seem to
emerge through misconceptions of users who assume that these names must exist in the PyPi
package repository, because they exist somewhere else or are famous software names (like gir).
Other typos, like bs4, emerge because the software is imported as bs4, but installed with the
identifier BeautifulSoup. Therefore, those names can be considered stdlib typos.

There was only one way to find out whether the mined typo candidates produce lots of installa-
tions: From the 18th January 2016, some of these packages that promised big popularity, were
registered and uploaded on the Python package repository. The following six typos were chosen
from Table 4.8: git, scikit, bs4, python3, docker, hg.

After one week, those packages were removed again. The upload of the packages was shortly
interrupted, because the PyPi administrators removed those packages for approximately 12
hours. Therefore, the average installations per day (aid) and the upload time in days (u¢) in Table
4.2 for these six typo names should be higher and subsequently also the absolute number of
installations (ni, and niy). In Table 4.9, the number of installations that were counted (successful
notify request sent to our web server) can be seen and the number of installations as provided
by the PyPi package repository statistics. The obtained data strongly indicates that the mined
data was not accurate in forecasting the typo activity behind certain packages, but was quite
good in pointing out high download candidates in general. The typo name bs4 was much more

35

Table 4.8: Real typos committed in the command history of 1454 distinct hosts. Typo names
in cursive have been used in the first phase of the empircal experiment. Bold names
have been chosen in the second stage empirical phase. All other names are potential
typo candidates.

Typo name in command history ~ Unique number of occurrences

git 90
scikit 89
urllib2 52
urllib 33
ipython[notebook] 32
bs4 31
docker 28
Jjson 28
protobug 24
ipython[all] 23
python3 23
hg 17
requests[security] 15
cpickle 13
tkinter 12
pickle 11
opencv 10
pyqt 10
stringio 10
sqlite 10
libxml2 9
youtube 9
hdf5 9
tensorflow 9
httplib 9
sqlite3 9
collections 8
openssl 8
ipython3 8

requested that the mined data suggested (368 average installations a day, the most successful
typo package as Table 4.2 shows). Scikit was half as much downloaded as git, although the
minded data suggested nearly the same popularity.

To draw a conclusion over the predictive quality of the mined command history data: The
occurrence ranking in the command history does not correlate strongly with the average (and
total) installation ranking achieved in the subsequent empirical phase. The mined data clearly
reveals very potent typo candidates. However, only six samples are not enough data points to
make reliable statistical conclusions.

36

Table 4.9: Table with installation counts for packages that were chosen according to frequent
misspellings in command history data. Installations counted in the empirical data
(ni,) and the installation count published in the PyPi repository statistics (niy) are
listed for the six packages.

Package name Number of unique installations (ni,) Repo installation count (niy)

bs4 2949 3834
git 800 1211
python3 470 851
scikit 348 726
docker 182 525
hg 64 64

4.10 Reactions After Infection

It is interesting to investigate the behavior of typo victims after they unintentionally installed the
typo package. The following different reaction types were considered.

4.10.1 Post Infection Visitation Rate

The post infection visitation rate is defined as the number of users who visited the URL with
information to the typosquatting experiment, which was printed after the notification program
was executed (The URL printed was: http://svs-repo.informatik.uni-hamburg.
de).

Surprisingly the number of users who visited the link outputted by the notification program to the
terminal is very low: Only 59 IP addresses out of 17289 total encountered unique installations
requested the information page about the typosquatting experiment on index.html. The logfiles
were examined for log entries after the timestamp at which the notification program submitted
its HTTP request. To locate potential log entries, the same IP address that submitted the notify
request was used in the search. This might not be to accurate, since users could have visited
the link after they changed the IP address. Those users who visited the information site with
the same IP address as they committed the installation, have installed the typo package on the
same computer from which they visited the URL. It is assumed that most people do not install
packages to the same computer where they also browser the web (for example they install PyPi
packages to a development computer over SSH).

A quick search through the logfile confirms that only 1265 of the total 61180 lines in the logfiles
belong to GET requests that target the index.html of the web server (and thus the link printed
in the warning message). And almost all of the 1265 logfile entries that target the index. html
file belong either to web crawlers or other visitors not related to the thesis (such as scanners
looking for vulnerabilities). The search needle used for the logfile was GET / (with a leading
whitespace to not match partial paths). Another explanation for the low post infection visitation
rate is the defective notification program: As in section Direct Mail Contact described, the URL

37

Table 4.10: Time in minutes before users visited the index.html URL (that was printed upon
typo package download) with information to the typosquatting experiment after they
installed a typo package.

Reaction time in minutes Number of visits

x>1 16 (27.1%)
1<x<5 13 (22.0%)
5<x<20 7 (11.9%)
20 <x <60 4 (6.8%)

60 <x < 180 3 (5.1%)

180 < «x 16 (27.1%)
Total visitors 59 (100%)

with information to the typosquatting experiment was not outputted correctly in some Python
packages with new pip versions.

If the time in minutes after the execution of the notification program until the visit to the info
page of these 59 users is considered, Table 4.10 is obtained. As the table shows, 16 out of 59
visitors looked up the info page within one minute after they installed the typo package. Another
13 users needed between one to five minutes before they browsed to the info page. 16 users
looked up the info page after three hours or more time had already passed. Because the sample
size is relatively small, the data does not have much statistical relevance. The table shows that
around half of the users who reacted looked up the info page within five minutes. This time
interval has another meaning: It shows how much time passed before the typo victims actually
found out about having installed a potentially malicious package. This window of opportunity
for the attacker demonstrates how long the attack went unnoticed. A real life attack however
would surely not notice the victim that they just got hacked - They would not even realize that
they committed a typo and that they installed malware, because it is trivial for the malware to
simulate a correct package installation, modify the terminal output on the fly (to hide the typo in
the install command) and to pretend that there never has been a typo installation. Therefore, the
window of opportunity has not much meaningfulness.

4.10.2 Counter Attacks Upon Installation

A counter attack is for example a SQL Injection attack or attempted admin logins into the
server backend by an IP address that originated first from the notification programs. Such
behavior emerges through the annoyance that typo packages depict to these users. The manual
or automatic submission of HTTP requests to the web server in order to distort the survey results
belongs also to this category.

Like all log files of publicly reachable servers, the web server log files contained lots of
random attacks and HTTP requests that targeted paths which are known to be sensitive (like
the phpMyAdmin setup file). It is considered to be a targeted attack, if the attacker uses an
URI that can only be known, when the message output of the notification program has been
inspected. There was one instance of a SQL Injection attack against the web application. The

38

attacker probed for a possible vulnerability by sending typical SQL special characters in HTTP
parameters (like single quotes), that would cause an error message if the application had been
vulnerable.

4.10.3 Repeated Downloads of the Same Typo Package

Whenever a user downloads a typo package and executes the notification program, a GET request
with the hosts properties is send. When a user installs the package more than once, one can see
those repeated installations because a timestamp is assigned to each request. This measurement
is a good indication of how well users react to unexpected behavior. If a user installs a package
several times in short succession, it may be an indication that she is inattentive or does not
understand that she downloaded a typo package without the expected functionality.

Another interesting observation is the repeated unsuccessful installation of the same typo
packages again and again. For instance, Table 4.11 shows the hosts with the top interactions.
From the time delay between single requests, it might be deduced whether the requests were
fired automatically. Some of the hosts with lots of requests in a consecutive time span might be
automatic build or deploy tools which were configured with a typo name instead of the correct
name. Another possibility is that an attacker tried to inject incorrect data and created a script
which would repeatedly submit incorrect installations.

4.10.4 Direct Mail Contact

Everyone that followed the link outputted by the warning message upon installation, would
see a explanation of the thesis and its objectives and a list of the data is collected. There are
also several possibilities to get in contact with the author and supervisors of the thesis (the mail
address and a link to the website of the faculty was put on the index.html file of the university
web server).

On the 26th January 2016, Michal Jaworski send a mail with suggestions on how to print the
warning message which was outputted in the notification program. He said that the warning
message output will be swallowed in newer version of pip, because “pip runs package’s setup.py
script in separate process using Popen and captures all the output. If package installation fails
then this output is never displayed”. Michal Jaworski suggested to throw an exception with
the warning message, because pip will print the failing logic to the standard output stream. In
tests of the notification program, the thesis author never experienced the lack of printing of
the warning message. It must be said that older versions of pip were used in said tests. The
possibility of the package installation to fail is rather slim and therefore also the chance that an
installing user will not see the warning message.

On the 19th January 2016, Robert Kern, a software developer and user of the Python package
index PyPi, wrote a mail during the second stage of the empirical phase (when packages based
on the command history of the previous empirical phase were uploaded). He asked to “put an
informative description into your PyPI packages so that people browsing PyPI or reading its
feed understand that you are not a malicious agent.”. After answering him that his suggestion
are going to be followed, the thesis author got in contact with the PyPi administrators and
send an explanatory email with motivations and research goals to the PyPi package repository
administrator and developer Donald Stufft.

39

Table 4.11: Top interactions of certain hosts. It is possible to guess the nature of the installing
host by observing how many times and in which intervals they installed the typo
package. IP addresses have been anonymized by removing the first two octets.

IP address Number of GET requests

**.10.11 805
*.%.240.122 590
*%156.118 206
**.127.129 176
**.158.85 140
*%.237.10 94
**221.5 80
**161.1 74
**115.17 73
**.11.200 72
**7.20 64
**.155.161 61
**.64.218 59
**.133.193 53
*%.126.98 52
*%.127.186 52
**129.111 50
**115.169 46
**217.58 43
*.%.227.100 42
**7.53 41
*.%.49.253 40
**81.23 37
**.134.197 34
* %2279 34
*%33.36 34

First, Mr. Stufft was not very pleased with this research and ordered to remove the functionality
that captures hardware information, the filtered past command history and the list of installed
packages. He reasoned that this information might include sensitive personal information.
Towards the collection of past command history, he wrote: “I don’t think you should be
collecting "The past command history that involved the package manager". That can contain
highly sensitive information (such as URLs to custom indexes, including passwords to allow
accessing said URLs).” He similarly argued to not capture hardware information and the list
of installed packages. After removing the controversial logic and promising to Mr. Stufft to
send him the results of the thesis, the packages were re-uploaded and the second stage of the
empirical phase was ended shorty after. This incident was also the reason for the interruption
mentioned in section Analysis of Command History on page 33.

40

4.10.5 Public Reactions

Users of the repository who came in contact with the thesis often created blog posts, mailing lists
replies or forums entries by reporting a possible threat or posing question about this bachelor
thesis.

Back in February 2015, when the idea of typosquatting package managers was born, the reaction
to the typo packages and its code was very quickly. The reaction to the empirical phase conducted
for this thesis was much weaker and not so prompt as experienced before (Compare to section
Python — Pypi.python.org on page 46).

A support ticket question in the repository for the Python package manager (http://sourceforge.
net/p/pypi/support-requests/571/, accessed on 17th February 2016) was created

by Emil Sauer Lynge on 18th December 2015. In this support ticket, he described the package as
spyware and complained that he did not have any possibility in denying the participation in the

study. He installed a PyPi package named cpickle and mentioned that “After moving to python 3,

some might not be aware that cpickle has been renamed to pickle.”. This statement confirms the

main findings in this thesis: High profile typo candidates emerge through confusions between
naming standards in major programming language versions.

Another incident report was posted on Pythons PyPi development git repository on bitbucket.org
by Adrian Klaver on 19th January 2016. In this issue, Adrian Klaver described the uploaded
typo package docker which was distributed during the second stage empirical phase as spyware
and that the package seems benign on the surface, but not healthy to leave it in the package in-
dex (https://bitbucket.org/pypa/pypi/issues/379/spyware—-packages,
accessed on 14th March 2016). No public answers to this support tickets were observed.

41

5 Practical Implications

Having discussed and described the type of attack and the obtained results, it is time to think
about the implications of typosquatting attacks against package managers. A question that imme-
diately emerges, is the following: Is it possible to fend off typosquatting attacks successfully?

In the following sections, generic defenses which package repositories could employ to mitigate
the risk of being attacked by typosquatters, will be discussed. First, a simple attacker model is
defined which describes the kinds of typosquatting attacks, that the system should be able to
withstand. In the end of this chapter, algorithms (in pseudocode) are going to be implemented in
the open source version of the Python package repository, to test the feasibility of the proposed
defenses.

5.1 Basic Attacker Model

In this context, it often makes sense to define an attacker model, which precisely declares the
strongest possible attacker against which the system’s defenses do still hold. It is important to
understand that the proposed defenses do not prevent all installations caused by typo packages.
They will merely prevent a great share of installations, such as the threat caused by lucrative
typo names (Like the stdlib typo candidates which were mined from the command history data,
compare section Analysis of Command History on page 33). The current package upload policy
of programming language package repositories makes it nearly impossible to create defenses that
protect against all typo installations (Without restricting open package registrations). Therefore,
the goal of the proposed defenses is to drastically reduce the threat of typosquatting attacks,
not to completely eradicate it. After all, complete security cannot be achieved, it often suffices
to make the life for attackers significantly harder. Well equipped adversaries (like offensive
governmental cybersecurity task forces) favor other, more direct, attack vectors in any case.

The proposed attacker model describes the roles (user, programmer, administrator, ...), the
propagation of the attacker (in the enterprise, somewhere in the Internet, ...), behavior of the
attacker (active, passive, observing, modifying) and the computing power of the attacker (limited
or unlimited). If a package repository is equipped with all defensive strategies described in this
chapter, then the system protects against an attacker, who must not be involved with package
repositories (no insider knowledge), but has public Internet access. She furthermore has basic
knowledge about computer science and can develop simple applications. She is qualified to
use open source malware and create arbitrary typosquatted packages and distribute them in
repositories. Therefore, her behavior can be modifying, but not as far as she is altering the
internal functioning of the repository server itself (Other than simply registering typo packages).
In addition, the attacker has limited financial assets and computing power.

42

5.2 Prohibit Core Package Names

This work has shown that most typo installations are caused by users trying to reinstall standard
library names with the package manager. So it is mandatory for every package repository to
completely prevent every module name to be registered by third party users, that has been
part of the core language at some point in time. Users sometimes stop using a programming
language for several years, only to come back and try to use deprecated and removed core
libraries. The first thing they will try to do, is to restore the known behavior by reinstalling the
missing functionality with a package manager.

5.3 Disallow Famous (Software) Names

Programmers do need to know many different software names and their field of applications.
This can be confusing in the beginning. So it might easily happen that programmers think
that there must be a Python module on PyPi with the name git, because git is such a widely
used software component. This entices programmers to try to install the package git. Package
management administrators should prevent normal users from registering such names. This
defense is hard to implement correctly, because it is not an easy task to judge whether the
registration of a popular software name was malicious or not. After all, it is still possible that
the original corporation behind a name wants to develop a application for it.

5.4 Reduce the Character Set in Package Names

Obviously the most basic defense mechanism against typosquatting is to reduce the character set
for packages names drastically. Ideally, there should only be lower case alphabetical characters
allowed and the underscore (or the hyphen — bot not both).

For example, if you allow both the hyphen and the underscore in package names, users tend to
interchange such characters, which leads to possible new typo variants. The same holds for case
sensitive package names: Was the package name written in CamelCase or all lowercase?

All such special characters which link words together are prone to be remembered incorrectly.
So it is extremely important to only allow one linking character between words.

Furthermore, the reduction to lowercase (or uppercase) letters is crucial. If package names
are case sensitive, typo packages may easily be generated by just switching the case of some
characters.

5.5 Introduce Additional Namespaces Into Package Names

The popular open source repository github.com identifies packages by two attributes [Git]: The
repository name and the authors/organizations name. Identifying a package by two items makes
it much harder to unintentionally misspell one identifier. Some modern package repositories like
bower.io and packagist.org already make use of this additional namespace. Therefore, it is much
more secure, if a package is named ntschacher/GoogleScraper instead of just GoogleScraper.

43

The reason is: If the package name is misspelled and not the author name, this will not have any
consequences, because the typo version cannot be registered in this namespace, since this author
name is already reserved. However, it could be argued that it is possible to typosquat on author
names and to register accounts with typosquatted author names. This might be a valid concern.
Because package names are much longer with two attributes, it is more likely that users will
copy and paste the package name instead of remembering it.

5.6 Prevent Direct Code Execution on Installations

One can differentiate between consciously provided configuration logic that allows package
authors to define hooks for certain events on package installation (post/pre-install hooks like in
npmjs.com [com]) and package managers that intentionally prevent code from being executed at
installation time (like the package manager bower from bower.io [Sc13]).

It is paramount to absolutely disallow any code from being executed when packages are installed.
Code needs to be trusted. And in the case when everybody may register packages that are
downloadable by everyone, code should not be executed automatically.

Even if there is no possibility to execute code during the installation, the malicious payload
might be executed when the typo package is actually used by the programmer. There is no
mean to prevent this (absolutely intended) way of code execution. In order to use the library, the
installing user needs to misspell the package name a second time (at import time), which is a
bigger hurdle than to grant code execution rights to the package installation process in the first
time.

5.7 Generate a List of Potential Typo Candidates

The idea is to mark certain package names as suspicious based on their edit distance to existing,
legitimate package names and to disallow them to be registered. Each package repository
provider knows their most downloaded packages. One can generate all typo variations with the
Levenshtein algorithm to compile a list of potential typo candidates for typosquatters. Disadvan-
tages are, that some combinations might actually be legitimate names and that the registration
process is made unnecessarily cumbersome and possibly prevents natural development of the
package repository.

In the Appendix in section Finding Existing Typo Packages on page 63, there is a Python script
which generates 14605 typos for the top packages (ordered by number of installations) of the
package repositories PyPi, npmjs.com and rubygems.org and checks whether the generated
candidate typos have already been registered. The exact same approach can be used to create
such typo names on the server side and to check if they are used on registrations.

5.8 Use Concepts of Established Package Managers

The programming language package managers PyPi, rubygems.org and npmjs.com are relatively
new package managers. It is interesting to analyze, in which way other package managers and
their repositories differentiate in fending off malicious packages.

44

5.8.1 Debian

The Debian project uses dpkg as a package manager and APT as a frontend. To upload packages
to the official Debian distribution, one must become an approved member of the Debian project
(Debian Developer) [Lar]. Most programmers do not have the permission to upload packages
to the Debian distribution, instead they contact a Debian Developer through a sponsorship
process. In this process, a mentor uploads and checks the package for technical correctness [Lar].
Alternatively, one can try to become a Debian Maintainer (with limited upload permissions), but
for this a Debian Developer must advocate for him and gain his trust. This makes unsupervised
uploading to the official Debian repository impossible. During the process of becoming a Debian
Developer, several of the Debian team members need to vouch for the applicant. Furthermore,
she must have contributed to the Debian distribution for at least 6 months [Lar]. Thus a
typosquatting attack on Debian does not seem feasible.

5.8.2 Arch Linux

Arch Linux, a more difficult to learn Linux distribution, uses pacman as a package manager.
There are two different repositories: The AUR (Arch User Repository) and the community
repository [arc]. When packages in the AUR, where everybody can submit packages, receive
enough attention and support from a Trusted User, they are moved in the official community
repository [arc]. This means that it is not possible to smuggle in typo packages into the official
repositories. Packages from the AUR must be manually downloaded and installed, which
prevents possible typo attacks. This hybrid approach is very effective against typosquatting
attacks and has the advantage that anybody can submit packages without undergoing a strict
qualification and selection procedure as it is the case in the Debian community.

Conclusion

Established package managers for major Linux distributions only grant package upload permis-
sion to trusted contributers. Anonymous third party submitters are not allowed to participate.
By using this concept in programming language package managers, malicious packages will
be prevented from being uploaded in most cases. When using a hybrid package manager like
Arch Linux, the convenience of uploading packages will be kept, while the official repository is
secured against typosquatting attacks.

5.9 Defense Mechanisms in Existing Package Repositories

Some package managers already prevent the most notorious attack vectors, whereas others
neglect even basic security measures. The following section will discuss, whether the surveyed
package repositories regard the defense mechanisms introduced in the previous chapter.

45

5.9.1 Node — Npmjs.com

The package repository on npmjs.com explicitly prevents standard library package names from
being used at registration. When names identical to core packages (like os) were tried to upload,
the submission was rejected with the error message: npm ERR! os is a core module
name:os

The security team on npmjs.com actively monitors new package uploads for malicious code
[Ball5]. The company liftsecurity is responsible for security threats on npmjs.com, since the
npmjs.com team encountered a severe bug [Vos14]. It seems that they are very well aware
about the threats that pre/post-install hooks introduce [Bal15]. In a blog post publication from
liftsecurity, they analyzed a malicious module with a single command (rm -rf) that would
delete all files on the targeted system. Even though the module was removed within two hours,
liftsecurity states that “You’re responsible for what you require” and that users should inspect
the source before they “npm install” it [Ball5]. They also mention that pre/post-install hooks
can be disabled by setting the flag —ignore-scripts in npm commands [Bal15]. Although each
advice is generally correct, not many users will abide by these instructions, since normal users
in general value convenience more than security.

Furthermore, liftsecurity analyzed the 404 log files of the npmyjs.com package repository server
and concluded that typo errors happen at a high scale on npmjs.com [Ball5]. With this analysis
of the web server logfiles, they did exactly what is proposed in the next section of this thesis, to
be an optimal defense against typosquatting package managers.

As aresult of the observation that almost all new submitted packages during the empirical phase
were downloaded by a single host immediately after registration, it was concluded that this could
be a mirror server or some kind of automatic tool that scans the code for security defects.

5.9.2 Python - Pypi.python.org

The Python package repository seems to have a much worse security infrastructure than
nodejs.com or rubygems.org. There is no functionality that prevents stdlib packages from
being submitted.

During the empirical phase, it could be observed that single, notoriously easy to commit typos
are blacklisted from being used in the registration process. For example, it was tried to use
the typo name setuptool instead of the real name setuptools, but the attempted registration
was denied with the error message: Forbidden, You are not allowed to store
"setuptool’ package information.

This kind of manual defense is reactionary, it only prevents the usage of typo names that already
caused some harm. In this specific case, the thesis author was the one who caused the harm,
when he first started experimenting with typosquatting package managers in January 2015. Back
then the setuptool typo (among others) was used in experiments. Several security researchers
detected the threat and discussed it in a blog post [Mat15b] and argued how to mitigate such
threats best on Twitter [Mat15a]. The discussion began shortly after a user submitted his concern
in a Python Internet forum [red15].

Python has no official way to define code execution callbacks at installation time. However, it is
very easy to execute code with the rights of the installing user, by just placing the code anywhere

46

in the setup.py file (The setup.py file is interpreted several times during installation). PyPi
package names consist of lowercase letters and the underscore as well as the minus character.

5.9.3 Ruby - Rubygems.org

The Ruby package repository compares best to the Python package repository in terms of de-
fenses against typosquatting. Stdlib packages and other typo names were successfully uploaded
on rubygems.org. The only mechanism that makes Ruby more difficult to attack than Python, is
the absence of an easy way to execute code automatically on installation. However, the Ruby
native extension build process was manipulated in order to execute arbitrary code [Cos08].
By depending on this exploit vector, not all users who downloaded the typo package, were
infected. Ruby package names consists of lowercase alphanumeric characters, the hyphen and
underscore.

5.9.4 PHP - Packagist.org

Attempts were made in order to exploit packagist.org in the empirical phase, but no code
execution upon installation was achieved. Composer (the name of the package manager for
packagist.org) installed missing dependencies in a sub-folder without ever interpreting the
included code. It is not completely clear whether packagist.org is immune to typosquatting
attacks. Further research in this field has to be proceeded.

5.9.5 .NET — Nuget.com

Nuget was not attacked during the thesis. However, several sources indicate that Nuget is
vulnerable to code execution during installation and that typosquatting is feasible [Han14].
Compare to section Rejected Programming Languages on page 15.

5.9.6 Javascript — Bower.io

There is a large discussion on https://github.com whether bower.io should allow code
to be executed upon install time. The common consensus indicates that it is a bad idea to allow
code execution upon installation [Sc13]. Therefore, bower.io represents a good example of
distributing packages in a secure fashion.

5.10 Defenses Based on User Installation Behavior

Typosquatting defenses should be implemented on the server side of package repositories. Every
package manager client has to send a request (mostly simple HTTP requests) to the package
repository when installing a package. Whenever such a request fails because the requested
package does not exist, the server logs the request and proceeds by announcing a standard error
message (404 not found for example).

47

Subsequently, the server should periodically run a program which is responsible for parsing the
web server 404 logfiles on the package repository and finding the most common installation
requests for non-existent packages (whose installation attempt resulted in a 404 HTTP error).
Additionally, the program defines a certain threshold (100 failed installations per package for
example) which cannot be surpassed and denies all registration attempts of all the names whose
dark installation rate is above the threshold. Alternatively, a registration of such a name must be
reviewed manually by the package repository team.

Assuming that past installation behavior of users correlates closely enough with future typo
mistakes, this method is going to prevent the registration of popular typo candidates, which
produce a lot of traffic. However, this method cannot prevent typos for the lower part of the
popularity distribution of names, because such typos do not have enough statistic significance to
be classified as typos.

A clever idea would be to combine the web server logfile analysis with a similar method as
discussed in Kahn et al.’s Conditional Probability Model to classify typos [KHLK15]. Similarly
as in Kahn et al.’s model, a 404 logfile entry is only considered a typo, if the same user (with the
same IP address) issued another installation command with short edit distance to the previous
erroneous name in short succession after the first typo installation.

This method shows that package repository providers have a huge advantage compared to
victims in the classical DNS typosquatting scenario: Provided failed installations are logged on
the package repository, the maintainers of the website exactly know which names are mostly
misspelled so they can prevent them from being registered. However, DNS typosquatting victims
do not own enough qualified information about which typo variant kept away visitors of their
domain name, because DNS queries for not yet registered domains get lost in the digital ether. If
DNS servers actually log DNS requests that failed to resolve, then this information is not locally
available as the web server logfiles in package repositories.

In order for this method to work, failed installation attempts have to be logged on the repositories.

They are logged at least on npmjs.com, because security researches made use of the 404 logfile
analysis method before [Ball5]. This can only happen if all installation commands results in a
network connection being opened to the repository server. This was tested with a packet sniffer by
installing package names which were not registered on the package repository. Pythons package
manager opens a TCP connection: When using pip with the command pip -vvv install
[unavailable package], an erroneous output like the following was received: Could

not fetch URL https://pypil.python.org/simple/[unavailable package]/:
404 Client Error: Not Found

This means that a HTTPS connection was opened and that the server logged the request.
The open network connection were confirmed by intercepting HTTP requests with the tool
mitmproxy.

The same principle applies to npm. A npm install [unavailable package] com-
mand results in the output: nom ERR! 404 Registry returned 404 for GET on
https://registry.npmjs.org/[unavailable package]. For Ruby, the same
behavior was observed: There is an open network connection for every installation attempt.
This means that every package manager should be able to make use of the previously discussed
defense tactic because each misspelled installation attempt leaves a 404 entry in the web server
logfiles.

48

5.11 Case Study: Defending the Python Package Repository

The Python package repository server infrastructure is described in a Python Enhancement
Proposal (www.python.org/dev/peps/pep—-0301/, accessed on 15th March 2016).
The central repository of the package repository server itself has been published as open source
and can be found on https://sourceforge.net/projects/pypi/ (Accessed on
15th March 2016). Unfortunately, no source code for the central Python package repository
server was hosted on this site. Its only task is to handle issues and resolve support tickets.

However, the source code for the future version of the Python package repository is published
on github.com and is available via the URL: github.com/pypa/warehouse (Accessed
on 15th March 2016). The responsible administrators posted on the site wiki.python.org/
moin/CheeseShopDev (Accessed on 15th March 2016) that “Currently, as of 2013-11-11,
PyPl is undergoing a complete rewrite from scratch” and as a result the new Python package
repository server named warehouse was born. It is possible to directly review the code of the
server and to develop and test a system that makes use of the defense mechanism discussed
previously.

The current system in production, however, is still the old version of the Python package
repository. It remains unclear whether the new version warehouse will ever be adopted as the
major version. Therefore, no real world implementation of the defense mechanisms discussed
in this chapter are going to be developed. Instead, abstract pseudo code is presented, which
incorporates the ideas of the defensive actions presented in section Defenses Based on User
Installation Behavior on page 47 and section Generate a List of Potential Typo Candidates on
page 44. The suggested algorithm below defends only against the upper part of the popularity
distribution of typo package names, which complies with the requirements defined in the attacker
model listed in section Basic Attacker Model on page 42. The defensive algorithm in the bottom
code listing works as follows: First, typos with edit distance one are generated for the most
popular packages in the repository (The boundary of what is considered popular can be set
dynamically). Then a list of often failed to install package names is computed from the 404
error logfiles of the web server (The idea behind the mining of 404 logfiles is explained in
section Defenses Based on User Installation Behavior on page 47). In a final step, the package
registration function is hooked and aborted whenever a user attempts to install a package that
can be found in the two generated lists. This defense has the affect of denying the registration of
large download typo candidates while maintaining an (relatively) open package repository.

This pseudocode presents the basic logic
that defends against the upper popularity
distribution of typosquatting attempts.

Must be run on the package repository server.
nmnmnn

0NN B W

O

def generate_typos_for_top_packages|() :

nmuwn

—_
—_ O

Generates typos variants for the top PyPi modules.

—_—
W N

This function must be periodically executed.

—_
~

Once every two hours with a cronjob for example.

LR

—
(9]

—_
@)}

get information for example

49

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

def

def

from: http://pypi-ranking.info/alltime
top_packages = get_list_of_top_packages_by_install_count ()

typos = []

for package_name in top_packages:
T = generate_typos_with_levenshtein_distance_one ()
typos.extend (T)

save_to_local_database (typos)

generate_list_of_popular_404_names() :
mmwnw

Finds all names that are often shadown installed.

This function must be periodically executed.

Once a day with a cronjob for example.
nmmn

modules = dict ()

for logfile in get_404_webserver_logfiles(interval=’6 months’)

for line in read(logfile):
package name not found
if 404’ in line:
module_name = parse (line)
increase the count for this module
modules [module_name] += 1

threshold = 1000

return {module_name: count for module_name, count \
in modules.items () if count >= threshold}

registration_hook (module_name) :
mmwnw

Tests whether to allow the registration of
the package name module_name.

This pre-registration hook is executed whenever a

user tries to register a new package.
nmnmn

typos_popular_modules = generate_typos_for_top_packages ()

typos_shadow_404_modules = generate_list_of popular_ 404_names ()

if module_name in typos_popular_modules:
raise SecurityException (’Module {} is a typo of\
a popular module name.’.format (module_name))

if module_name in typos_shadow_404_modules:
raise SecurityException (’Module {} is too\

often shadow installed.’.format (module_name))

return True

50

6 Discussion

6.1 Validity of Results

When analyzing empirical results, one should always challenge the validity of the results. It
could even be suspected that the obtained data was created by third parties. The first question is
obviously: Is it possible that the whole traffic to the university web server was simulated and
automatically generated, instead of humans making misspellings and installing the notification
program’?!

With over 17 thousand unique IP addresses counted in the empirical phase, this assumption is
very unlikely. The manipulating entity would have needed to setup hostnames in institutions, to
which even a well equipped adversary hardly has any access (Like universities and governmental
institutes or well known private cooperations). Furthermore, the data submitted looks very
natural. A good indicator of the validity is the slight drop of installation numbers during
the weekends (Shown in section Installations Over Time on page 29). The official download
numbers from the package repositories also corresponded closely with the numbers retrieved
from the empirical data (Compare to section Verification of Installation Count on page 26). It
was therefore concluded that all gathered traffic was real in the sense that it originated from
notification programs which were installed by humans making typos.

However, there is obviously noise in the notification HTTP requests. Some people have sent
data that was not created by the notification program or originated from automatic tools which
downloaded and executed the typo program repeatedly. This source of error was minimized by
counting each IP address only once (All the IP addresses in Table 4.11 which submitted many
thousand HTTP requests, were counted only a single time).

6.2 Severity of Attack Impact

If the thesis author would have had malicious intentions and if malware was distributed instead
of notification programs which only send information to a university web server, then these
17.289 unique hosts would be compromised (So called zombies). At least 43.6 % of hosts with
administrative rights would have provided the attacker with 8552 computers with complete
access to the whole operating system API (Assuming that some hosts were in a virtual environ-
ment, administrative privileges do not mean complete access to the physical machine). In the
following section, the severity of a malicious attack using typosquatting in package managers is
discussed.

The results of this thesis showed that creating a botnet by exploiting typo errors from humans is
perfectly possible. However, it is not easy to answer how much the legitimate and transparent
academic background of the empirical phase protected the attack from being interrupted by
security researchers, package server administrators and mostly well educated and technical
highly capable typo victims.

51

The typical botnet creators do not target technically versatile people, they instead often exploit
gullible users, who cannot distinguish fake websites from the original (phishing), who are tricked
by shady emails with too-good-to-be-true promises (spamming) or who download executables
from untrustworthy places like file sharing websites. Often these simple traps act as test:
Whoever falls for such obvious tricks, will not put up a big fight against exploitation from botnet
owners.

A good metric for the alertness of typo victims is the visit rate for the website that informed about
the typosquatting attack on the URL http://svs-repo.informatik.uni-hamburg.
de after having downloaded the typo package. The notification program informed the user about
the conducted typo in a warning message and printed the above link (The warning message can
be seen in section Notification Program in Python on line 194 on page 56).

A typo victim is considered to be reactive, if she visits the link after being infected. By analyzing
the web server logfiles, it was found in section Post Infection Visitation Rate on page 37 that only
59 out of the 17289 unique IP addresses visited the link printed on installation time. So most
users either do not read the warning message at all, or simply avoid visiting the link in fear of
consequences (like malware luring behind the URL). This is surprising, since the reason for the
message was to raise awareness of possible threats from typosquatting in package managers.

As Table 4.7 shows, there were 276 hosts from educational institutions among the installations
(.edu in the domain name), 23 from governmental institutions (.gov in the domain name) and
even two from U.S military (.mil in the domain name). Having infected hundreds of research
institutions and various well known universities demonstrates how serious the consequences
of typosquatting attacks are. Possible real life attacks could exploit Pythons proximity to the
scientific community to intrude in networks with sensitive research institutions. The same
applies to the private cooperations that make use of these programming languages. Therefore,
one must see typosquatting as a kind of attack which is very easy to conduct in a not-targeted
way. Possible attack targets could be in the industry or scientific laboratories. Even though
typosquatting attacks are not targeted, if one waits long enough, the possibility grows that
someone misspells a name and installs a typo package. Even a colleague from the author’s
university installed one of the distributed typo packages and subsequently found out in this way
about the thesis.

Another important factor that contributes to the severeness of such typosquatting attacks is the
possibility to completely automate the attack. It is trivial to setup scripts that retrieve a list of
popular packages (From statistical pages about top packages that can be found on every package
repository), generate typos for those packages (using Levenshtein distance and fat-finger distance
algorithms), create packages with exploit code for all the generated typos and finally upload
the packages by abusing the package manager upload functionality (of pip, gem or npm). After
the first installations are confirmed, the past command history and list of installed packages
reveal what common typos users commit (as shown in the section Analysis of Command History
on page 33) and the attacker can leverage the attack immensely by data mining the command
history for lucrative typo candidates. This approach however leaves a relatively large footstep,
because the high amount of installations increases the probability to get detected by security
researchers and authorities.

Alternatively, the attacker could chose to target the the long "Taile" of typosquatting names
[sic!] [SKCS14]. By uploading many packages with small download-numbers (with different

52

user accounts and using proxies with different IP addresses) it is still possible to achieve many
installations while not risking immediate detection.

6.3 Observing Typosquatting in the Wild

In this section, it will be discussed if typosquatting attacks are already used in the wild. A small
Python script was developed which collected the top 50 PyPi, top 36 npmjs.com and top 80
rubygems.org packages and proceeded to generate typos with edit distance one for these names.
The script can be found in the Appendix in section Finding Existing Typo Packages. It then
was verified whether the typos were already registered — If so, a typo candidate might have
been identified. To be sure that the typo candidate is a genuine typo, the package needed to be
inspected manually for malicious code.

After running the script, 14605 typo candidates were generated and 155 of these names were
found to be registered in the targeted repositories. However, it became clear that most of them
were legitimate packages, which were accidentally spelled similar to popular packages. At
least 3 out of 155 packages were true typo packages. For example a package named requestes
on PyPi is a typo version of the famous package requests. The typo package can be found on
the URL https://pypi.python.org/pypi/requestes [Fis]. The package author
clearly points out the dangers that come with typo packages in the description of the package: “If
you are reading this admonition while running pip, 1’d like to take this time to inform you that
you just ran arbitrary code from the untrusted Internet (maybe even as root?). The fact that this
was so easy is a bit of a problem.” [Fis] This message was also printed to the terminal when the
typo package was installed. The download numbers for this package were: 6 downloads in the
last day, 53 downloads in the last week, 180 downloads in the last month (Data accessed on 20th
January 2016).

The script revealed also a protective typo registration for a Ruby package on rubygems.org
which was named uuidroolds instead of the correct package name uuidtools (Source: https:
//rubygems.org/gems/uuidtoolds, accessed on 25th February 2016). The package
README file states: “aws 2.9.0 has a typo in dependency on uuidtools, publishing this empty
gem so nobody can take advantage of it.”. This finding reveals a new dimension in typosquatting:
Typos do also occur during development. And if software internally installs a typo dependency,
this might be exploited by malicious agents as well.

Another example for a package that warns of typosquatting is the package named coffeescript
(original package: coffee-script) on npmjs.com. When downloading the package source with the
command wget ‘npm view coffeescript dist.tarball®, apackage.json with a
preinstall hook that triggers a script which contains the following code is obtained:

console.log("You misspelled "coffee-script’")
process.exit (1)

This package has the following download statistics: 42 downloads in the last day, 305 downloads
in the last week, 1,449 downloads in the last month (Source: https://www.npmjs.com/
package/coffeescript, accessed on 25th February 2016).

It can be concluded that some people are aware of the typosquatting threat and that the simple
idea behind it is well known. All three packages, requestes on PyPi, coffee-script on npmjs.com
and uuidtoolds in rubygems.org, are not of malicious nature, they act either as a warning to

53

the community, or as defensive registration (Similarly like many companies also register typo
domain names defensively). By manually inspecting the typo candidates which the Python script
generated, no malicious packages were found. This indicates that the security awareness in the
observed repositories is high and that the life time of malicious typo packages is rather small.
Although the thesis author did not find explicitly malicious packages, they do exist however
[Ball5]. Future work must absolutely launch a systematic and longitudinal study to quantify the
threat of typosquatting in all major package managers. This work should proceed in a similar
fashion as the DNS location research from Kahn et al. and Agten et al. [KRHLK15; AJPN15].

6.4 Ethical Concerns

During the empirical phase, the notification program was executed on many thousand computers
and sent back information to a web server without explicitly asking for permission. Critics may
argue that the research could have been conducted by simply counting the download number
provided by the package repositories instead of proving successful installations by sending back
home a notification request.

However, the real threat at hand, code execution on remote systems, cannot be shown if
the empirical research is conducted without using the notification program. By recording a
successful installation with an open TCP connection to a university server and the sending of
captured information, it becomes obvious that a malicious attacker could have easily installed
malware instead. Therefore, the execution of code on foreign systems was regarded necessary
to demonstrate the seriousness of the situation. As it was shown in section Verification of
Installation Count on page 26, Ruby packages have significantly smaller empirical installation
counts as the package repository statistics suggest. If the numbers from the package repository
had been considered as proper way to measure the number of installations, the threat would
have been overestimated. In fact, as Table 4.3 shows, only 55.5% of Python, 42.1% of Node.js
and only 23.1% of Ruby installations that the package repositories published on their statistics
page, were actually counted during the empirical phase. And in order to quantify the threat, it
1s much more accurate to count the number of times code could have been executed, instead
of counting the statistical number of a third party, where many questions remain unanswered:
Do they count each single installation of the same package and the same IP address? What
percentage of installations can be ascribed to mirrors and web crawlers? Does the download
count include manual downloads of the raw files, or only installations via the respective package
managers?

Another concern is the publication of the results of this thesis. Showing that it is very easy
to infect thousands of computers around the world may tempt criminals to profit from this
research and motivate them to use this methodology with bad intentions. However, withdrawal
of information never induced increased security and the thesis author think that full disclosure is
the best option. This argument is supported by the fact that package managers already encounter
typosquatting in the wild, therefore the simple idea of typosquatting cannot be completely
novel.

54

6.5 Future Work

This thesis was very practical in its nature and the most part revolved around the interpretation
of empirical results. Furthermore, this thesis has shown that existing names within programming
languages (Such as stdlib names) leads to confusion with third party package managers. Typo
errors do always happen. There are hidden semantics and knowledge in programming language
communities, that when exploited by registering such names, can easily lead to thousands of
infected machines in a matter of days. This is a problem which surely exist in many programming
language communities. Future work should elaborate on this danger and provide reliable and
systematic methods to identify these typo names. In this thesis, it was established that stdlib
typos had the most impact. It was also revealed that their popularity originates from that fact that
those names are used in the core of programming languages. Furthermore, it is conjectured that
the usage of stdlib names correlates with its installation rate. However, all these assumptions
must be shown in a systematic study.

Furthermore, a systematic study of which package names are misspelled most should be done. It
has only been shown that typos happen and that especially typos with semantically confusing
background do occur much more than normal typos. However, the whole popularity distribution
of those names remains hidden. The package repository server administrators should shed
light into this distribution by providing researches with anonymized server log files for further
analysis (Compare with section Defenses Based on User Installation Behavior on page 47).
Obtaining this data is going to reveal the whole popularity distribution of typo names and allows
the security community to provide effective defenses.

In this thesis, the popular programming languages Python, Node.js and Ruby were attacked.
All their package managers were found to be vulnerable to typosquatting attacks. It is of great
importance to find out whether other programming languages (such as .NET or Go) suffer
from the same problems. If all points discussed in the section Prerequisites for Typosquatting
Attacks on page 14 apply to a specific package repository, then it is most likely vulnerable to
typosquatting attacks.

6.6 Conclusion

The main research question of this thesis, “Are programming language package managers
vulnerable to typosquatting attacks?”, can be answered with a strong yes. Thousands of hosts
can be infected with malware by typosquatting package managers within few days (1). Almost
50% of all infected hosts run the code with administrative rights (2). Even highly security aware
institutions (.gov and .mil hosts) fell victim to this attack (3). Typosquatting does exist in the
wild and package repositories are aware of it (4). Furthermore, it is very easy to mount effective
defenses against typosquatting in package managers (5), but these defenses are mostly not used
in the examined package repositories (6) (PyPi, npmjs.com, rubygems.org).

55

7 Appendix

7.1 Notification Program in Python

00NN N AW

A PR PSP DPBE DB WL LWLWLWWLLWLWWWERNDNDNDNEDDNDNDNDNDNDIN = === == = =
NN PHAE RO, OOV IANNPE WD, OOV AANNEAE WD, OOV N A WND—ONO

#!/usr/bin/env python
—x— coding: utf—-8 —x*-—

nmmnn

Notification program used in the typosquatting
bachelor thesis for the python package repository.

Created in autumn 2015.

Copyright by Nikolai Tschacher

mnmnn

import os

import ctypes
import sys

import platform
import subprocess

debug = False

we are using Python3
if sys.version_info[0] == 3:
import urllib.request
from urllib.parse import urlencode

GET = urllib.request.urlopen

def python3POST (url, data={}, headers=None) :
Returns the response of the POST request as string or
False if the resource could not be accessed.
nmnmn
data = urllib.parse.urlencode (data) .encode ()
request = urllib.request.Request (url, data)
try:
reponse = urllib.request.urlopen (request, timeout=15)
cs = reponse.headers.get_content_charset ()
if cs:
return reponse.read() .decode (cs)
else:
return reponse.read() .decode ('utf-8")
except urllib.error.HTTPError as he:
try again if some 400 or 500 error was received
return '’
except Exception as e:
everything else fails
return False

56

48 POST = python3POST
49 | # we are using Python2

50 |else:
51 import urllib2
52 from urllib import urlencode

53 GET = urllib2.urlopen
54 def python2POST (url, data={}, headers=None) :

55 mon

56 See python3POST

57 mon

58 req = urllib2.Request (url, urlencode (data))
59 try:

60 response = urllib2.urlopen (req, timeout=15)
61 return response.read()

62 except urllib2.HTTPError as he:

63 return '’

64 except Exception as e:

65 return False

66 POST = python2POST

67

68

69 |[try:

70 from subprocess import DEVNULL # py3k
71 |except ImportError:
72 DEVNULL = open(os.devnull, ’'wb’)

73

74

75 |def get_command_history():

76 if os.name == 'nt’:

71 # handle windows

78 # http://serverfault.com/questions/95404/

79 #is-there-a—-global-persistent—-cmd-history

80 # apparently, there is no history in windows : (
81 return '’

82

83 elif os.name == ’'posix’:

84 # handle linux and mac

85 cmd = "cat {}/.bash_history | grep -E "pip[23]? install"’
86 return os.popen(cmd. format (os.path.expanduser (’'~"))) .read()
87

88

89 |def get_hardware_info():

90 if os.name == 'nt’:

91 # handle windows

92 return platform.processor ()

93

94 elif os.name == ’"posix’:

95 # handle linux and mac

96 if sys.platform.startswith(’linux’):

97 try:

98 hw_info = subprocess.check_output (' 1shw —-short’,
99 stderr=DEVNULL, shell=True)

100 except:

101 hw_info = "’

102

103 if not hw_info:

104 try:

105 hw_info = subprocess.check_output (' lspci’,

57

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

stderr=DEVNULL, shell=True)
except:
hw_info = 77’
hw_info += "\n’ +\
os.popen (' free —-m’).read().strip()

return hw_info

elif sys.platform == ’"darwin’:

According to https://developer.apple.com/library/

mac/documentation/Darwin/Reference/ManPages/

man8/system profiler.8.html

no personal information is provided by detaillLevel: mini
return os.popen(’system_profiler -detaillevel mini’) .read()

def get_all_installed modules():
first try the default path

pip_

list = os.popen('pip list’).read() .strip/()

if pip_list:

return pip_list
else:

if os.name == 'nt’:

paths = (’/C:/Python27’,
"C:/Python34’,
"C:/Python26’,
"C:/Python33’,
"C:/Python35’,
"C:/Python’,
"C:/Python2’,
"C:/Python3’)
try some paths that make sense to me
for loc in paths:
pip_location = os.path.join(loc, ’'Scripts/pip.exe’)
if os.path.exists(pip_location):
cmd = ' {} list’.format (pip_location)
try:
pip_list = subprocess.check_output (cmd,
stderr=DEVNULL, shell=True)
except:
pip_list = "'
if pip_list:
return pip_list

return '’

def notify_ home (url, package_name, intended_package_name) :
host_os = platform.platform()

try:
admin_rights = bool (os.getuid() == 0)
except AttributeError:
try:
ret = ctypes.windll.shell32.IsUserAnAdmin ()
admin_rights = bool(ret != 0)
except:

admin_rights = False

58

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

if os.name != ’'nt’:
try:
pip_version = os.popen(’'pip —-version’) .read()
except:
pip_version =
else:
pip_version = platform.python_version ()

rs

url_data = {
"pl’: package_name,
"p2’: intended_package_name,
"p3’: 'pip’,
"p4’ : host_os,
"p5’: admin_rights,
"p6’: pip_version,

}

post_data = {
"p7’": get_command_history (),
"pP8’7: get_all_installed_modules(),

"9’ : get_hardware_info (),
}
url_data = urlencode (url_data)
response = POST(url + url_data, post_data)
if debug:
print (response)
print (')
print ("Warning!!! Maybe you made a typo in your installation\

command or the module does only exist in the python stdlib?!")
print ("Did you want to install " {}’\

instead of " {}’?2?!".format (intended_package_name, package_name))
print (' For more information, please\

visit http://svs—-repo.informatik.uni-hamburg.de/’)

def main() :
if debug:
notify_home (' http://localhost:8000/app/?’,
"pmba_basic’, ’'pmba_basic’)
else:
notify_home (' http://svs—-repo.informatik.uni-hamburg.de/app/?’,
"pmba_basic’, ’pmba_basic’)
if _ name_ == '__main_ ’:
main ()

7.2 Data for Algorithmically Generated Typos

Below are tables for each method of algorithmically generating typos for the base names async
and request. There were four different methods to create typo candidates algorithmically. All
typo names have been uploaded to npmjs.com. The typo creation methodologies do produce
overlapping typos, since they are similar in design. The four different methods are:

59

Own method: Using the algorithm to create typos presented in section Generation of
Typosquatting Targets on page 16.

. Using the online tool at tools.seochat.com/tools/online-keyword-typo-generator/ (Ac-
cessed on 15th March 2016)

. Using the online tool at www.seoconsulting.de/cgi-bin/typo-generator.cgi for the base
name request with 147 total installations. (Accessed on 15th March 2016)

. Using the online tool at www.digitalcoding.com/tools/typo-generator.html (Accessed on
15th March 2016)

Table 7.1: 37 Typos generated by the own algorithm for the base name async with 144 total installations.

Number of installations ~ Algorithmically created package names

144 Sum of all installations

39 aysnc

28 aync

13 asnyc

10 asyc

7 assync

5 asycn

4 saync

3 ansync asnync asyanc asysnc
2 csyna asyncc casync asnc

1 asynyc ysanc yasync asynac asynsc nsyac aasync aysync ascny asyync asycnc

acsync anysc sasync ascync asaync asynnc acyns
0 nasync sync asyn async

Table 7.2: 64 Typos generated by the own algorithm for the base name request with 168 total installations.
Number of installations Algorithmically created package names

168 Sum of all installations

29 requst

10 regest reques
requrest reqeust reugest
requset rquest
reuest

9

8

5

4 requeset

3 requets trequest requesst rerquest requet

2 eequrst reequest resquest requesrt

1 rsequest retquest reqquest requeust reqseut reqeuest equest rqeuest
rtequest reuquest qrequest srequest reqruest requuest rsqueet requgest
requerst requeest requesqt requtest urequest ruequest rrequest resueqt
retuesq sequert rugeest reqtesu rqequest requsest ueqrest requetst qeruest
tequesr erquest reeuqst rtquese erequest reqtuest reqsuest requtse requesut
requeqst requestt

0 request

60

Table 7.3: 17 Typos generated by tools.seochat.com/tools/online-keyword-typo-generator/ for the base name request with 28 total installa-

tions.

Number of installations ~ Algorithmically created package names

Sum of all installations

S = N B~ A

asymc
asynv

saync

astnc asunc

ssync aeync aaync adync awync ashnc asyhc asybc asynd
ZSync gsync asynx

Table 7.4: 18 Typos generated by tools.seochat.com/tools/online-keyword-typo-generator/ for the base name request with 36 total installa-

tions.

Number of installations ~ Algorithmically created package names

Sum of all installations

—_ N W W oo

requset

requesr

requeat requesy

eequest reauest rewuest

erquest tequest gequest fequest reqiest reqyest reqjest
requeet requedt requewt requesg

Table 7.5: 40 Typos generated by www.seoconsulting.de/cgi-bin/typo-generator.cgi for the base name request with 147 total installations.

Number of installations

Algorithmically created package names

147 Sum of all installations

39 aysnc

28 aync

13 asnyc

10 asyc

7 assync

6 asymc

5 asycn asynv

4 saync

2 asnc asyncc axync astnc asunc

1 aasync asyync asynnc wsync ssync aaync awync aeync adync azync
asé6bne as7nc asjnc ashne asgne asybc asyhce asyjc asynd asynf

0 Sync asyn gsync Xsync zsync asynx

61

Table 7.6: 66 Typos generated by www.seoconsulting.de/cgi-bin/typo-generator.cgi for the base name request with 166 total installations.

Number of installations

Algorithmically created package names

Sum of all installations

requst

reqest reques

reuqest reqeust

rquest requset

reuest requesr

requet requesst requets requeat requesy

reequest eequest dequest rewuest resuest reauest

equest rrequest reqquest requuest requeest requestt erquest rqeuest 4equest
Sequest tequest gequest fequest rwquest r3quest rdquest rrquest rfquest rdquest
rsquest reluest re2uest reqyest req7est req8est reqiest reqgkest reqjest reqhest
requwst requ3st requ4st requrst requfst requdst requsst requewt requeet requedt
requext requezt requesS reques6 requesh requesg requesf

Table 7.7: 38 Typos generated by www.digitalcoding.com/tools/typo-generator.html for the base name async with 146 total installations.

Number of installations ~ Algorithmically created package names

146 Sum of all installations

39 aysnc

28 aync

13 asnyc

10 asyc

7 assync

6 asymc

5 asynv asycn

4 saync

2 axync astnc asunc asnc asyncc

1 ssync wsync aaync azync adync aeync awync asgnc ashnc as7nc
asyjc asyhc asynf asynd aasync asyync asynnc asénc asybc

0 ZSync gsync asynx sync asyn

Table 7.8: 60 Typos generated by www.digitalcoding.com/tools/typo-generator.html for the base name request with 159 total installations.

Number of installations

Algorithmically created package names

159

Sum of all installations

requst

reqest reques

reuqest reqeust

rquest requset

requesr reuest

requeat requesy requet requets requesst

eequest dequest rewuest reauest reequest

fequest tequest Sequest 4equest rwquest rsquest rdquest rrquest r4quest
r3quest reluest re2uest reqyest reghest reqjest reqiest req8est req7est requwst
requsst requdst requrst requé4st requ3st requezt requext requedt requeet requewt
requesf requesg reques6 reques5 equest erquest rqeuest rrequest reqquest
requuest requeest requestt

62

7.3 Finding Existing Typo Packages

The script below creates typos and checks whether they are already registered in the package
repositories. The approach is explained in section Observing Typosquatting in the Wild on page
53. In order to run this script, the thesis repository must be cloned and the path must be changed
to uploader/. Then the script must be run with Python3.

1 |#!/usr/bin/env python3

2

3 wnnn

4 |This script generates Levenshtein edit distance typo of the
5 |top typo packages from Python, Node.js, Ruby and checks

6 |whether they are already registered. If they are, this may
7 |indicate that someone squats on the name.

8

9 |python typo_checker.py 2>&1 | tee existing_typos.txt

10 [mmm

11

12 |import threading

13 |import queue

14 |import uploader

15 |import typo_generator

16

17 |task_queue = queue.Queue ()

18 |write_lock = threading.Lock ()

19 |outfile = open(’existing_typos.txt’, 'wt’)

20

2] |for pm in (’'pip’, ’'npm’, ’‘gem’):

22 top_modules = uploader.SUPPORTED_PACKAGE_MANAGERS [pm] .\
23 get_top_packages ()

24

25 for e in top_modules:

26 pn = e[l].lower ()

27 typos = typo_generator.generate_typos (pn)

28 print (e, typos)

29 for typo in typos:

30 task_queue.put ((pm, pn, typo))

31

32

33 |def check_typo (queue) :

34 while not queue.empty () :

35 pm, pn, typo = queue.get ()

36 if pn != typo:

37 if uploader.SUPPORTED_PACKAGE_MANAGERS [pm] .\
38 package_exists (typo) :
39 with write_lock:

40 msg = "{}: {} —> {}'.format (pm, pn, typo)
41 print (msg)

42 outfile.write(msg + "\n’)

43

44 |print (' Queue has {} elements’.format (task_queue.gsize()))
45 |threads = []

46 |for i in range(10):

47 t = threading.Thread (target=check_typo,

48 args= (task_queue,))

49 threads.append (t)

50 t.start ()

63

51

52 |for t in threads:
53 t.join ()

54

55 |outfile.close ()

7.4 Database Layout

The database layout for the web application that stored the installation requests from the
notification program is listed below. The SQL code runs in any sqlite3 database.

1 CREATE TABLE "cnt_installs_installation" (

2 /* Autmatic incrementing index. =/

3 "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,
4

5 /* The typo name of the package. x/

6 "typo_squatted_package_name" warchar (100) NOT NULL,
7

8 /+ The non typo version of the package name. */
9 "real_ package_name" varchar (100) NOT NULL,

10

11 /* The package manager to which the

12 squatted package was uploaded. =*/

13 "package_manager" wvarchar (20) NOT NULL,

14

15 /+ The ip address that is associated

16 with the HTTP request =/

17 "remote_address" char (39) NULL,

18

19 /+ Timestamp of the request which indicates

20 a successful installation. =«/

21 "requested_at" datetime NOT NULL,

22

23 /+ Whether the user who downloaded the package
24 was an admin. Helpful to estimate how

25 dangerous the attack is. =*/

26 "administrative_rights" bool NOT NULL,

27

28 /+ The mac address of the user which installed
29 the package. Useful if many users use the

30 same external IP. Not used. =*/

31 "mac_address" wvarchar (6) NULL,

32

33 /+ Additional data that some packages may want
34 to send in the future. Not used. x/

35 "extra_data" text NULL,

36

37 /+ Information about the package manager client
38 such as the output from

39 ‘pip —--version' or ‘npm —--version‘. */

40 "package_manager_client" wvarchar (500) NULL,

41

42 /+ Past commands that included the package manager.
43 Outputs from ‘history | grep "npm install"‘ »*/
44 "command_history" text NULL,

64

45
46
47
48
49
50
51
52
53
54
55
56

/* What hardware the host uses. */
"hardware_specs" text NULL,

/+ List of all installed modules belonging to
the package manager. Outputs from ‘pip list' x/
"installed_modules" text NULL,

/* The operating system the package was installed on.
Outputs from "uname —-a" for instance" =/
"host_os" varchar (500) NULL

7.5 Contents of the Storage Medium

Lots of programs used and documentation created during this thesis were never mentioned. The
attached data storage has two files in the top hierarchy. A PDF file called thesis.pdf, the digital
document of this thesis, and a folder called src¢/ which includes all data (except for the literature)
used during the thesis. The src/ folder is further divided into several subfolders. The structure
of this repository is explained in the README.html that is placed on top of the src/ folder. The
README.html file includes a list of most important documents: The sqlite3 database with the
complete data recorded during the empirical phase. The Python scripts to create the figures and
tables in this thesis. The Django server application to store the notification requests. A Python
script to upload and create typo packages dynamically. And of course the notification programs

for Python, Node.js and Ruby.

65

Bibliography

[AJPN15]

[Ale]

[arc]

[Ball5]

[com]

[Cos08]

[Dam64]

[DeB]

[Fis]

[Git]

[Ham50]

[Han14]

Pieter Agten, Wouter Joosen, Frank Piessens, and Nick Nikiforakis. “Seven
months’ worth of mistakes: A longitudinal study of typosquatting abuse”. In:
Proceedings of the 22nd Network and Distributed System Security Symposium
(NDSS 2015). Internet Society. 2015.

Alexa. Alex top sites. http://www.alexa.com/topsites. [Online;
Accessed on 23th February 2016].

archlinux.org. AUR wiki. https://wiki.archlinux.org/index.
php/Arch_User_Repository. [Online; Accessed on 3rd March 2016].

Adam Baldwin. A Malicious Module on npm. https://blog.liftsecurity.
1i0/2015/01/27/a-malicious—module—on—npm. [Online; Accessed
on 15th March 2016]. liftsecurity, Jan. 2015.

Npmjs.com community. Npmjs scripts. https://docs.npmijs . com/
misc/scripts. [Online; Accessed on 2nd March 2016].

Victor Costan. Post-install/post-update scripts for ruby gems. http://blog.
costan.us/2008/11/post—install-post-update—-scripts-
for.html. [Online; Accessed on 24th February 2016]. Nov. 2008.

Fred J Damerau. “A technique for computer detection and correction of spelling
errors”. In: Communications of the ACM 7.3 (1964), pp. 171-176.

Erik DeBill. Module Counts. http://www.modulecounts.com/. [On-
line; Accessed on 24th February 2016].

David Fischer. Typo package requestes. https://pypi.python.org/
pypi/requestes. [Online; Accessed on 10th March 2016].

Github.com. Github. https://github.com/. [Online; Accessed on 2nd
March 2016].

Richard W Hamming. “Error detecting and error correcting codes”. In: Bell
System technical journal 29.2 (1950), pp. 147-160.

Jeff Handley. NuGet: Broken By Design. http://blog.nuget.org/
20141010/nuget—is—-broken.html. [Online; Accessed on 24th Febru-
ary 2016]. Oct. 2014.

66

[KHLK15]

[Lar]

[Lev66]

[LKDRO7]

[Matl5a]

[Mat15b]

[Max]

[ME10]

[NavOl]

[npm]

[NW70]

[PhiO0]

[PN11]

[red15]

Mohammad Taha Khan, Xiang Huo, Zhou Li, and Chris Kanich. “Every Second
Counts: Quantifying the Negative Externalities of Cybercrime via Typosquatting”.
In: Security and Privacy (SP), 2015 IEEE Symposium on. 1EEE. 2015, pp. 135—
150.

Asheesh Laroia et al. Sponsorship Debian. http://mentors.debian.
net /. [Online; Accessed on 2nd March 2016].

Vladimir I Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966, pp. 707-710.

Matthew A Levin, Marina Krol, Ankur Doshi, and David L Reich. “Extraction
and mapping of drug names from free text to a standardized nomenclature.” In:
AMIA. 2007, pp. 438—42.

John Matherly. Discussion about typosquatting on Twitter. https://twitter.
com/achillean/status/569990797845639168. [Online; Accessed
on 15th March 2016]. Feb. 2015.

John Matherly. Hostility in the Cheese Shop. https://blog.shodan.io/
hostility-in—-the-python-package—-index/. [Online; Accessed
on 15th March 2016]. shodan, Feb. 2015.

MaxMind. GeolP2 Downloadable Databases. https://dev.maxmind.

com/geoip/geoip2/downloadable/. [Online; Accessed on 29th Febru-
ary 2016].

Tyler Moore and Benjamin Edelman. “Measuring the perpetrators and funders of
typosquatting”. In: Financial Cryptography and Data Security. Springer, 2010,
pp- 175-191.

Gonzalo Navarro. “A guided tour to approximate string matching”. In: ACM
computing surveys (CSUR) 33.1 (2001), pp. 31-88.

npmjs.com. Npmyjs statistics. https://www .npmjs . com/. [Online;
Accessed on 1st March 2016].

Saul B Needleman and Christian D Wunsch. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins”. In: Journal
of molecular biology 48.3 (1970), pp. 443—453.

Lawrence Philips. “The double metaphone search algorithm”. In: C/C++ users
Journal 18.6 (2000), pp. 38—43.

Jon David Patrick and Dung Nguyen. “Automated Proof Reading of Clinical
Notes.” In: PACLIC. 2011, pp. 303-312.

reddit.com/user/chub79. Reddit discussion about typosquatting. www .reddit .
com/ r /Python/ comments /2wr93b /this_one_ looks_odd_
doesnt_it/. [Online; Accessed on 3rd March 2016]. 2015.

67

[rub]

[RY98]

[Scl3]

[SKCS14]

[Tai]

[Tec]

[ULl77]

[Vos14]

[WBWVO06]

rubygems.org. Rubygems statistics. https://rubygems.org/stats.
[Online; Accessed on 1st March 2016].

Eric Sven Ristad and Peter N Yianilos. “Learning string-edit distance”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 20.5 (1998),
pp- 522-532.

Sindre Sorhus and bower.io community. Bower post install hook discussion.
https://github.com/bower /bower/issues/249. [Online; Ac-
cessed on 23th February 2016]. 2013.

Janos Szurdi, Balazs Kocso, Gabor Cseh, Jonathan Spring, Mark Felegyhazi, and
Chris Kanich. “The Long "Taile" of Typosquatting Domain Names”. In: 23rd
USENIX Security Symposium (USENIX Security 14). 2014, pp. 191-206.

Taichino. PyPi statistics. http://pypli—-ranking.info/alltime.
[Online; Accessed on 1st March 2016].

Microsoft Technet. Understanding Reverse Lookup. https://technet.
microsoft.com/en—-us/library/cc730980. aspx. [Online; Ac-
cessed on 4th March 2016].

Julian R. Ullmann. ‘“A binary n-gram technique for automatic correction of
substitution, deletion, insertion and reversal errors in words”. In: The Computer
Journal 20.2 (1977), pp. 141-147.

Laurie Voss. Newly Paranoid Maintainers. http://blog.npmjs.org/
post /80277229932 /newly—-paranoid-maintainers. [Online; Ac-
cessed on 2nd March 2016]. Mar. 2014.

Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels.
“Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting.” In:
SRUTI 6 (2006), pp. 31-36.

68

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst
und keine anderen als die angegebenen Hilfsmittel — insbesondere keine im Quellenverzeichnis
nicht benannten Internet-Quellen — benutzt habe. Alle Stellen, die wortlich oder sinngememss
aus Veroffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere
weiterhin, dass ich die Arbeit vorher nicht in einem anderen Priifungsverfahren eingereicht
habe und die eingereichte schriftliche Fassung der auf dem elektronischen Speichermedium
entspricht.

Ich bin damit einverstanden, dass meine Abschlussarbeit in den Bestand der Fachbereichsbiblio-
thek eingestellt wird.

Hamburg, den 15. Mirz 2016

Nikolai Philipp Tschacher

69

